{"title":"氧空位促进骨支架对抗细菌感染的芬顿反应","authors":"cijun shuai, Xiaoxin Shi, Feng Yang, Haifeng Tian, Pei Feng","doi":"10.1088/2631-7990/ad01fd","DOIUrl":null,"url":null,"abstract":"Highlights High-energy ball milling was proposed to construct oxygen vacancy defects. Scaffold with individualized shape and porous structure was fabricated by selective laser sintering. Antibacterial material was used to adsorb H 2 O 2 to the site of bacterial infection. The accumulated H 2 O 2 could amplify the Fenton reaction efficiency to induce more ·OH. The scaffold possessed matched mechanical properties and good biocompatibility.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"13 1","pages":"0"},"PeriodicalIF":16.1000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection\",\"authors\":\"cijun shuai, Xiaoxin Shi, Feng Yang, Haifeng Tian, Pei Feng\",\"doi\":\"10.1088/2631-7990/ad01fd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highlights High-energy ball milling was proposed to construct oxygen vacancy defects. Scaffold with individualized shape and porous structure was fabricated by selective laser sintering. Antibacterial material was used to adsorb H 2 O 2 to the site of bacterial infection. The accumulated H 2 O 2 could amplify the Fenton reaction efficiency to induce more ·OH. The scaffold possessed matched mechanical properties and good biocompatibility.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad01fd\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad01fd","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection
Highlights High-energy ball milling was proposed to construct oxygen vacancy defects. Scaffold with individualized shape and porous structure was fabricated by selective laser sintering. Antibacterial material was used to adsorb H 2 O 2 to the site of bacterial infection. The accumulated H 2 O 2 could amplify the Fenton reaction efficiency to induce more ·OH. The scaffold possessed matched mechanical properties and good biocompatibility.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.