Suyang Wang, Weilin Jia, Yingying Deng, Jie Shen, Jun Cao, Peng Wang, Ping Zhao, Yuanyu Wang, Qi Sun
{"title":"碱性脱除天然高岭土合成二维A型分子筛","authors":"Suyang Wang, Weilin Jia, Yingying Deng, Jie Shen, Jun Cao, Peng Wang, Ping Zhao, Yuanyu Wang, Qi Sun","doi":"10.1142/s1793604723510244","DOIUrl":null,"url":null,"abstract":"Type A molecular sieves have been extensively employed in various fields. It is noteworthy that the direct synthesis of type A molecular sieves from natural kaolin is a common practice among researchers. Traditional type A molecular sieves are characterized by a three-dimensional cubic lattice structure. In this study, our objective is to facilitate the transformation of type A molecular sieves into a two-dimensional layered configuration by employing a two-dimensional layered material as a templating agent. In this research, natural kaolin serves as the primary source material. To eliminate impurities including quartz, illite, and dolomite, an alkali-based solvent extraction method is employed, yielding amorphous silicon and aluminum compounds. Subsequently, a graphene-based templating agent is introduced, and a hydrothermal synthesis process is employed to fabricate two-dimensional type A molecular sieves. The method described herein yields two-dimensional layered type A molecular sieves with a crystallinity exceeding 90%, thereby resulting in a specific surface area that is approximately 11-fold greater compared to their three-dimensional type A counterparts. The applicability of this methodology can be extended to the valorization of low-grade natural mineral resources, optimizing their utility. Furthermore, the approach presented herein for the synthesis of two-dimensional molecular sieves is of a universal nature, offering valuable insights that can serve as a reference for the synthesis of various other categories of two-dimensional molecular sieves.","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"78 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of 2-D Type A molecular sieves by alkaline removal of natural kaolin\",\"authors\":\"Suyang Wang, Weilin Jia, Yingying Deng, Jie Shen, Jun Cao, Peng Wang, Ping Zhao, Yuanyu Wang, Qi Sun\",\"doi\":\"10.1142/s1793604723510244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type A molecular sieves have been extensively employed in various fields. It is noteworthy that the direct synthesis of type A molecular sieves from natural kaolin is a common practice among researchers. Traditional type A molecular sieves are characterized by a three-dimensional cubic lattice structure. In this study, our objective is to facilitate the transformation of type A molecular sieves into a two-dimensional layered configuration by employing a two-dimensional layered material as a templating agent. In this research, natural kaolin serves as the primary source material. To eliminate impurities including quartz, illite, and dolomite, an alkali-based solvent extraction method is employed, yielding amorphous silicon and aluminum compounds. Subsequently, a graphene-based templating agent is introduced, and a hydrothermal synthesis process is employed to fabricate two-dimensional type A molecular sieves. The method described herein yields two-dimensional layered type A molecular sieves with a crystallinity exceeding 90%, thereby resulting in a specific surface area that is approximately 11-fold greater compared to their three-dimensional type A counterparts. The applicability of this methodology can be extended to the valorization of low-grade natural mineral resources, optimizing their utility. Furthermore, the approach presented herein for the synthesis of two-dimensional molecular sieves is of a universal nature, offering valuable insights that can serve as a reference for the synthesis of various other categories of two-dimensional molecular sieves.\",\"PeriodicalId\":12701,\"journal\":{\"name\":\"Functional Materials Letters\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Materials Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793604723510244\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Materials Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793604723510244","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of 2-D Type A molecular sieves by alkaline removal of natural kaolin
Type A molecular sieves have been extensively employed in various fields. It is noteworthy that the direct synthesis of type A molecular sieves from natural kaolin is a common practice among researchers. Traditional type A molecular sieves are characterized by a three-dimensional cubic lattice structure. In this study, our objective is to facilitate the transformation of type A molecular sieves into a two-dimensional layered configuration by employing a two-dimensional layered material as a templating agent. In this research, natural kaolin serves as the primary source material. To eliminate impurities including quartz, illite, and dolomite, an alkali-based solvent extraction method is employed, yielding amorphous silicon and aluminum compounds. Subsequently, a graphene-based templating agent is introduced, and a hydrothermal synthesis process is employed to fabricate two-dimensional type A molecular sieves. The method described herein yields two-dimensional layered type A molecular sieves with a crystallinity exceeding 90%, thereby resulting in a specific surface area that is approximately 11-fold greater compared to their three-dimensional type A counterparts. The applicability of this methodology can be extended to the valorization of low-grade natural mineral resources, optimizing their utility. Furthermore, the approach presented herein for the synthesis of two-dimensional molecular sieves is of a universal nature, offering valuable insights that can serve as a reference for the synthesis of various other categories of two-dimensional molecular sieves.
期刊介绍:
Functional Materials Letters is an international peer-reviewed scientific journal for original contributions to research on the synthesis, behavior and characterization of functional materials. The journal seeks to provide a rapid forum for the communication of novel research of high quality and with an interdisciplinary flavor. The journal is an ideal forum for communication amongst materials scientists and engineers, chemists and chemical engineers, and physicists in the dynamic fields associated with functional materials.
Functional materials are designed to make use of their natural or engineered functionalities to respond to changes in electrical and magnetic fields, physical and chemical environment, etc. These design considerations are fundamentally different to those relevant for structural materials and are the focus of this journal. Functional materials play an increasingly important role in the development of the field of materials science and engineering.
The scope of the journal covers theoretical and experimental studies of functional materials, characterization and new applications-related research on functional materials in macro-, micro- and nano-scale science and engineering. Among the topics covered are ferroelectric, multiferroic, ferromagnetic, magneto-optical, optoelectric, thermoelectric, energy conversion and energy storage, sustainable energy and shape memory materials.