{"title":"裂隙岩体热-力耦合模拟的数值流形方法","authors":"Jiawei Liang, Defu Tong, Fei Tan, Xiongwei Yi, Junpeng Zou, Jiahe Lv","doi":"10.1016/j.jrmge.2023.07.020","DOIUrl":null,"url":null,"abstract":"As a calculation method based on the Galerkin variation, the numerical manifold method (NMM) adopts a double covering system, which can easily deal with discontinuous deformation problems and has a high calculation accuracy. Aiming at the thermo-mechanical (TM) coupling problem of fractured rock masses, this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field, deduces related system equations, and proposes a penalty function method to deal with boundary conditions. Numerical examples are employed to confirm the effectiveness and high accuracy of this method. By the thermal stress analysis of a thick-walled cylinder (TWC), the simulation of cracking in the TWC under heating and cooling conditions, and the simulation of thermal cracking of the Swedish Äspö Pillar Stability Experiment (APSE) rock column, the thermal stress, and TM coupling are obtained. The numerical simulation results are in good agreement with the test data and other numerical results, thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.","PeriodicalId":54219,"journal":{"name":"Journal of Rock Mechanics and Geotechnical Engineering","volume":"50 4","pages":"0"},"PeriodicalIF":9.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical manifold method for thermo-mechanical coupling simulation of fractured rock mass\",\"authors\":\"Jiawei Liang, Defu Tong, Fei Tan, Xiongwei Yi, Junpeng Zou, Jiahe Lv\",\"doi\":\"10.1016/j.jrmge.2023.07.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a calculation method based on the Galerkin variation, the numerical manifold method (NMM) adopts a double covering system, which can easily deal with discontinuous deformation problems and has a high calculation accuracy. Aiming at the thermo-mechanical (TM) coupling problem of fractured rock masses, this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field, deduces related system equations, and proposes a penalty function method to deal with boundary conditions. Numerical examples are employed to confirm the effectiveness and high accuracy of this method. By the thermal stress analysis of a thick-walled cylinder (TWC), the simulation of cracking in the TWC under heating and cooling conditions, and the simulation of thermal cracking of the Swedish Äspö Pillar Stability Experiment (APSE) rock column, the thermal stress, and TM coupling are obtained. The numerical simulation results are in good agreement with the test data and other numerical results, thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.\",\"PeriodicalId\":54219,\"journal\":{\"name\":\"Journal of Rock Mechanics and Geotechnical Engineering\",\"volume\":\"50 4\",\"pages\":\"0\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rock Mechanics and Geotechnical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jrmge.2023.07.020\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rock Mechanics and Geotechnical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jrmge.2023.07.020","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Numerical manifold method for thermo-mechanical coupling simulation of fractured rock mass
As a calculation method based on the Galerkin variation, the numerical manifold method (NMM) adopts a double covering system, which can easily deal with discontinuous deformation problems and has a high calculation accuracy. Aiming at the thermo-mechanical (TM) coupling problem of fractured rock masses, this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field, deduces related system equations, and proposes a penalty function method to deal with boundary conditions. Numerical examples are employed to confirm the effectiveness and high accuracy of this method. By the thermal stress analysis of a thick-walled cylinder (TWC), the simulation of cracking in the TWC under heating and cooling conditions, and the simulation of thermal cracking of the Swedish Äspö Pillar Stability Experiment (APSE) rock column, the thermal stress, and TM coupling are obtained. The numerical simulation results are in good agreement with the test data and other numerical results, thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
期刊介绍:
The Journal of Rock Mechanics and Geotechnical Engineering (JRMGE), overseen by the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, is dedicated to the latest advancements in rock mechanics and geotechnical engineering. It serves as a platform for global scholars to stay updated on developments in various related fields including soil mechanics, foundation engineering, civil engineering, mining engineering, hydraulic engineering, petroleum engineering, and engineering geology. With a focus on fostering international academic exchange, JRMGE acts as a conduit between theoretical advancements and practical applications. Topics covered include new theories, technologies, methods, experiences, in-situ and laboratory tests, developments, case studies, and timely reviews within the realm of rock mechanics and geotechnical engineering.