Mateus C. Guimarães , Fernando T. Pinho , Carlos B. da Silva
{"title":"粘弹性流体自由湍流剪切流动的相似理论","authors":"Mateus C. Guimarães , Fernando T. Pinho , Carlos B. da Silva","doi":"10.1016/j.jnnfm.2023.105148","DOIUrl":null,"url":null,"abstract":"<div><p>A new theory is formulated for the description of the conformation state of the polymer chains in free turbulent shear flows of viscoelastic fluids. Using self-similarity arguments and new scaling relations for the turbulent flux of conformation tensor we show the existence of minimum and maximum solvent dissipation reduction asymptotes, and four different polymer deformation regimes. The similarities with the maximum drag reduction asymptote of turbulent pipe flow<span> is discussed and new scaling laws are obtained for all components of the mean conformation tensor at each deformation regime. Analytical solutions for the self-similar transverse profiles of the conformation tensor components<span> are also obtained, providing the complete solution for the mean flow problem at the far field. The analysis is developed for both planar jets and wakes and covers the two limits of shear flows, with large and small velocity differences, respectively. Comparisons of the new theoretical results with several direct numerical simulations employing the FENE-P rheological model show excellent agreement.</span></span></p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"323 ","pages":"Article 105148"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The similarity theory of free turbulent shear flows of viscoelastic fluids\",\"authors\":\"Mateus C. Guimarães , Fernando T. Pinho , Carlos B. da Silva\",\"doi\":\"10.1016/j.jnnfm.2023.105148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new theory is formulated for the description of the conformation state of the polymer chains in free turbulent shear flows of viscoelastic fluids. Using self-similarity arguments and new scaling relations for the turbulent flux of conformation tensor we show the existence of minimum and maximum solvent dissipation reduction asymptotes, and four different polymer deformation regimes. The similarities with the maximum drag reduction asymptote of turbulent pipe flow<span> is discussed and new scaling laws are obtained for all components of the mean conformation tensor at each deformation regime. Analytical solutions for the self-similar transverse profiles of the conformation tensor components<span> are also obtained, providing the complete solution for the mean flow problem at the far field. The analysis is developed for both planar jets and wakes and covers the two limits of shear flows, with large and small velocity differences, respectively. Comparisons of the new theoretical results with several direct numerical simulations employing the FENE-P rheological model show excellent agreement.</span></span></p></div>\",\"PeriodicalId\":54782,\"journal\":{\"name\":\"Journal of Non-Newtonian Fluid Mechanics\",\"volume\":\"323 \",\"pages\":\"Article 105148\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Newtonian Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037702572300160X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037702572300160X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
The similarity theory of free turbulent shear flows of viscoelastic fluids
A new theory is formulated for the description of the conformation state of the polymer chains in free turbulent shear flows of viscoelastic fluids. Using self-similarity arguments and new scaling relations for the turbulent flux of conformation tensor we show the existence of minimum and maximum solvent dissipation reduction asymptotes, and four different polymer deformation regimes. The similarities with the maximum drag reduction asymptote of turbulent pipe flow is discussed and new scaling laws are obtained for all components of the mean conformation tensor at each deformation regime. Analytical solutions for the self-similar transverse profiles of the conformation tensor components are also obtained, providing the complete solution for the mean flow problem at the far field. The analysis is developed for both planar jets and wakes and covers the two limits of shear flows, with large and small velocity differences, respectively. Comparisons of the new theoretical results with several direct numerical simulations employing the FENE-P rheological model show excellent agreement.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.