中始新世海平面波动的天文步调:来自浅水碳酸盐斜坡沉积的推论

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Paleoceanography and Paleoclimatology Pub Date : 2023-11-01 DOI:10.1029/2023pa004633
T. C. Brachert, C. Agnini, C. Gagnaison, J.‐P. Gély, M. J. Henehan, T. Westerhold
{"title":"中始新世海平面波动的天文步调:来自浅水碳酸盐斜坡沉积的推论","authors":"T. C. Brachert, C. Agnini, C. Gagnaison, J.‐P. Gély, M. J. Henehan, T. Westerhold","doi":"10.1029/2023pa004633","DOIUrl":null,"url":null,"abstract":"Abstract Astrochronologically calibrated deep‐sea records document the Cenozoic (66–0 Ma) global climatic cooling in great detail, but the magnitude of sea‐level fluctuations of the middle Eocene Warmhouse state (47.8–37.7 Ma) and the ∼40.3 Ma warming event of the Middle Eocene Climatic Optimum (MECO) is not well constrained. Here, we present a sequence stratigraphic classification of a shallow marine mixed carbonate—clastic ramp system for this time interval in Paris basin, France. Based on sedimentologic, paleogeographic and biostratigraphic data, we hypothesize that the 22 elementary sequences recognized each correspond to the long cycle of orbital eccentricity (0.405 Myr). With the exception of the MECO, the shoreline trajectory of superimposed, third‐order depositional sequences evolved in phase with the very long cycles of orbital eccentricity (2.4 Myr), suggesting significant polar ice build‐up leading to sea level lowstands during nodes of the very long eccentricity cycle. Inferred from Fischer Plot methodology, Lutetian third‐order eustasy was in the order of 5–10 m and during the MECO 30 m or more. Furthermore, the shallow‐water record implies that third order sea‐level changes were astronomically paced in the middle Eocene Warmhouse climate state, but a decoupling occurred during the transient MECO warming.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":"4 5","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astronomical Pacing of Middle Eocene Sea‐Level Fluctuations: Inferences From Shallow‐Water Carbonate Ramp Deposits\",\"authors\":\"T. C. Brachert, C. Agnini, C. Gagnaison, J.‐P. Gély, M. J. Henehan, T. Westerhold\",\"doi\":\"10.1029/2023pa004633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Astrochronologically calibrated deep‐sea records document the Cenozoic (66–0 Ma) global climatic cooling in great detail, but the magnitude of sea‐level fluctuations of the middle Eocene Warmhouse state (47.8–37.7 Ma) and the ∼40.3 Ma warming event of the Middle Eocene Climatic Optimum (MECO) is not well constrained. Here, we present a sequence stratigraphic classification of a shallow marine mixed carbonate—clastic ramp system for this time interval in Paris basin, France. Based on sedimentologic, paleogeographic and biostratigraphic data, we hypothesize that the 22 elementary sequences recognized each correspond to the long cycle of orbital eccentricity (0.405 Myr). With the exception of the MECO, the shoreline trajectory of superimposed, third‐order depositional sequences evolved in phase with the very long cycles of orbital eccentricity (2.4 Myr), suggesting significant polar ice build‐up leading to sea level lowstands during nodes of the very long eccentricity cycle. Inferred from Fischer Plot methodology, Lutetian third‐order eustasy was in the order of 5–10 m and during the MECO 30 m or more. Furthermore, the shallow‐water record implies that third order sea‐level changes were astronomically paced in the middle Eocene Warmhouse climate state, but a decoupling occurred during the transient MECO warming.\",\"PeriodicalId\":54239,\"journal\":{\"name\":\"Paleoceanography and Paleoclimatology\",\"volume\":\"4 5\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography and Paleoclimatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/2023pa004633\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023pa004633","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

天文年代学校准的深海记录非常详细地记录了新生代(66-0 Ma)全球气候变冷,但中始新世暖室状态(47.8-37.7 Ma)和中始新世气候优化(MECO)的~ 40.3 Ma变暖事件的海平面波动幅度没有得到很好的约束。本文对法国巴黎盆地这一时期的浅海混合碳酸盐-碎屑斜坡体系进行了层序地层分类。根据沉积学、古地理和生物地层学资料,我们假设22个已识别的基本层序对应于轨道偏心长旋回(0.405 Myr)。除MECO外,叠加的海岸线轨迹,三级沉积序列与轨道偏心旋回(2.4 Myr)相演化,表明在极长偏心旋回的节点期间,显著的极地冰积聚导致海平面低水位。根据Fischer样地方法推断,Lutetian三阶海平面上升幅度为5-10 m, MECO期间为30 m或更大。此外,浅水记录表明,在始新世中期的暖化气候状态中,三级海平面的变化是以天文速度进行的,但在短暂的MECO变暖期间发生了解耦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Astronomical Pacing of Middle Eocene Sea‐Level Fluctuations: Inferences From Shallow‐Water Carbonate Ramp Deposits
Abstract Astrochronologically calibrated deep‐sea records document the Cenozoic (66–0 Ma) global climatic cooling in great detail, but the magnitude of sea‐level fluctuations of the middle Eocene Warmhouse state (47.8–37.7 Ma) and the ∼40.3 Ma warming event of the Middle Eocene Climatic Optimum (MECO) is not well constrained. Here, we present a sequence stratigraphic classification of a shallow marine mixed carbonate—clastic ramp system for this time interval in Paris basin, France. Based on sedimentologic, paleogeographic and biostratigraphic data, we hypothesize that the 22 elementary sequences recognized each correspond to the long cycle of orbital eccentricity (0.405 Myr). With the exception of the MECO, the shoreline trajectory of superimposed, third‐order depositional sequences evolved in phase with the very long cycles of orbital eccentricity (2.4 Myr), suggesting significant polar ice build‐up leading to sea level lowstands during nodes of the very long eccentricity cycle. Inferred from Fischer Plot methodology, Lutetian third‐order eustasy was in the order of 5–10 m and during the MECO 30 m or more. Furthermore, the shallow‐water record implies that third order sea‐level changes were astronomically paced in the middle Eocene Warmhouse climate state, but a decoupling occurred during the transient MECO warming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
期刊最新文献
Summer and Autumn Insolation as the Pacemaker of Surface Wind and Precipitation Dynamics Over Tropical Indian Ocean During the Holocene: Insights From Paleoproductivity Records and Paleoclimate Simulations Biomarker Evidence for an MIS M2 Glacial‐Pluvial in the Mojave Desert Before Warming and Drying in the Late Pliocene Detecting Paleoclimate Transitions With Laplacian Eigenmaps of Recurrence Matrices (LERM) Palynofloral Change Through the Paleocene‐Eocene Thermal Maximum in the Bighorn Basin, Wyoming Pacific‐Driven Salinity Variability in the Timor Passage Since 1777
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1