AA双层石墨烯的磁场控制电导率

C Pub Date : 2023-04-21 DOI:10.3390/c9020042
Vardan Apinyan, Tadeusz Kopeć
{"title":"AA双层石墨烯的磁场控制电导率","authors":"Vardan Apinyan, Tadeusz Kopeć","doi":"10.3390/c9020042","DOIUrl":null,"url":null,"abstract":"We consider the effect of the external magnetic field on the in-plane conductivity in the AA-stacked bilayer graphene system in the strong excitonic condensate regime. We include the effects of the applied inter-layer electric field and the Coulomb interactions. The on-site and inter-layer Coulomb interactions were treated via the bilayer Hubbard model. Using the solutions for the physical parameters in the system, we calculate the in-plane conductivity of the bilayer graphene. By employing the Green-Kubo formalism for the polarization function in the system, we show that the conductivity in the AA bilayer system is fully controlled by the applied magnetic field. For the partial filling in the layers, the electrical conductivity is different for different spin orientations, and, at the high values of the magnetic field, only one component remains with the given spin orientation. Meanwhile, for the half-filling limit, there is no spin-splitting observed in the conductivity function. The theory evaluated here shows the new possibility for spin-controlled electronic transport in the excitonic bilayer graphene system.","PeriodicalId":9397,"journal":{"name":"C","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Field-Controlled Electrical Conductivity in AA Bilayer Graphene\",\"authors\":\"Vardan Apinyan, Tadeusz Kopeć\",\"doi\":\"10.3390/c9020042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the effect of the external magnetic field on the in-plane conductivity in the AA-stacked bilayer graphene system in the strong excitonic condensate regime. We include the effects of the applied inter-layer electric field and the Coulomb interactions. The on-site and inter-layer Coulomb interactions were treated via the bilayer Hubbard model. Using the solutions for the physical parameters in the system, we calculate the in-plane conductivity of the bilayer graphene. By employing the Green-Kubo formalism for the polarization function in the system, we show that the conductivity in the AA bilayer system is fully controlled by the applied magnetic field. For the partial filling in the layers, the electrical conductivity is different for different spin orientations, and, at the high values of the magnetic field, only one component remains with the given spin orientation. Meanwhile, for the half-filling limit, there is no spin-splitting observed in the conductivity function. The theory evaluated here shows the new possibility for spin-controlled electronic transport in the excitonic bilayer graphene system.\",\"PeriodicalId\":9397,\"journal\":{\"name\":\"C\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/c9020042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/c9020042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了在强激子凝聚态下,外加磁场对aa堆叠双层石墨烯体系面内电导率的影响。我们包括施加层间电场和库仑相互作用的影响。通过双层Hubbard模型处理现场和层间库仑相互作用。利用系统中物理参数的解,我们计算了双层石墨烯的面内电导率。利用Green-Kubo的极化函数形式,证明了AA双层体系的电导率完全受外加磁场的控制。对于部分填充层,不同自旋取向的电导率是不同的,并且在磁场高值时,只有一个分量保持给定的自旋取向。同时,在半填充极限下,电导率函数没有出现自旋分裂现象。本文所评估的理论显示了在激子双层石墨烯体系中自旋控制电子输运的新可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic Field-Controlled Electrical Conductivity in AA Bilayer Graphene
We consider the effect of the external magnetic field on the in-plane conductivity in the AA-stacked bilayer graphene system in the strong excitonic condensate regime. We include the effects of the applied inter-layer electric field and the Coulomb interactions. The on-site and inter-layer Coulomb interactions were treated via the bilayer Hubbard model. Using the solutions for the physical parameters in the system, we calculate the in-plane conductivity of the bilayer graphene. By employing the Green-Kubo formalism for the polarization function in the system, we show that the conductivity in the AA bilayer system is fully controlled by the applied magnetic field. For the partial filling in the layers, the electrical conductivity is different for different spin orientations, and, at the high values of the magnetic field, only one component remains with the given spin orientation. Meanwhile, for the half-filling limit, there is no spin-splitting observed in the conductivity function. The theory evaluated here shows the new possibility for spin-controlled electronic transport in the excitonic bilayer graphene system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
C
C
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of Ni@SiC/CNFs Composite and Its Microwave-Induced Catalytic Activity Novel Superhard Tetragonal Hybrid sp3/sp2 Carbon Allotropes Cx (x = 5, 6, 7): Crystal Chemistry and Ab Initio Studies Unveiling the Structure of Metal–Nanodiamonds Bonds: Experiment and Theory Photocatalytic N-Formylation of CO2 with Amines Catalyzed by Diethyltriamine Pentaacetic Acid Enhanced Adsorption of Arsenate from Contaminated Waters by Magnesium-, Zinc- or Calcium-Modified Biochar—Modeling and Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1