ProxiFit

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2023-09-27 DOI:10.1145/3610920
Jiha Kim, Younho Nam, Jungeun Lee, Young-Joo Suh, Inseok Hwang
{"title":"ProxiFit","authors":"Jiha Kim, Younho Nam, Jungeun Lee, Young-Joo Suh, Inseok Hwang","doi":"10.1145/3610920","DOIUrl":null,"url":null,"abstract":"Although many works bring exercise monitoring to smartphone and smartwatch, inertial sensors used in such systems require device to be in motion to detect exercises. We introduce ProxiFit, a highly practical on-device exercise monitoring system capable of classifying and counting exercises even if the device stays still. Utilizing novel proximity sensing of natural magnetism in exercise equipment, ProxiFit brings (1) a new category of exercise not involving device motion such as lower-body machine exercise, and (2) a new off-body exercise monitoring mode where a smartphone can be conveniently viewed in front of the user during workouts. ProxiFit addresses common issues of faint magnetic sensing by choosing appropriate preprocessing, negating adversarial motion artifacts, and designing a lightweight yet noise-tolerant classifier. Also, application-specific challenges such as a wide variety of equipment and the impracticality of obtaining large datasets are overcome by devising a unique yet challenging training policy. We evaluate ProxiFit on up to 10 weight machines (5 lower- and 5 upper-body) and 4 free-weight exercises, on both wearable and signage mode, with 19 users, at 3 gyms, over 14 months, and verify robustness against user and weather variations, spatial and rotational device location deviations, and neighboring machine interference.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"46 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ProxiFit\",\"authors\":\"Jiha Kim, Younho Nam, Jungeun Lee, Young-Joo Suh, Inseok Hwang\",\"doi\":\"10.1145/3610920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although many works bring exercise monitoring to smartphone and smartwatch, inertial sensors used in such systems require device to be in motion to detect exercises. We introduce ProxiFit, a highly practical on-device exercise monitoring system capable of classifying and counting exercises even if the device stays still. Utilizing novel proximity sensing of natural magnetism in exercise equipment, ProxiFit brings (1) a new category of exercise not involving device motion such as lower-body machine exercise, and (2) a new off-body exercise monitoring mode where a smartphone can be conveniently viewed in front of the user during workouts. ProxiFit addresses common issues of faint magnetic sensing by choosing appropriate preprocessing, negating adversarial motion artifacts, and designing a lightweight yet noise-tolerant classifier. Also, application-specific challenges such as a wide variety of equipment and the impracticality of obtaining large datasets are overcome by devising a unique yet challenging training policy. We evaluate ProxiFit on up to 10 weight machines (5 lower- and 5 upper-body) and 4 free-weight exercises, on both wearable and signage mode, with 19 users, at 3 gyms, over 14 months, and verify robustness against user and weather variations, spatial and rotational device location deviations, and neighboring machine interference.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3610920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

尽管许多工作将运动监测带到智能手机和智能手表上,但在这些系统中使用的惯性传感器需要设备处于运动状态才能检测运动。我们介绍ProxiFit,这是一款非常实用的设备上运动监测系统,即使设备静止不动,也能对运动进行分类和计数。ProxiFit利用运动器材中天然磁性的新型近距离感应,带来了(1)一种不涉及设备运动的新运动类别,如下半身机器运动;(2)一种新的体外运动监测模式,用户在锻炼时可以方便地在面前查看智能手机。ProxiFit通过选择适当的预处理,消除对抗性运动伪影,并设计轻量级但耐噪的分类器来解决微弱磁感测的常见问题。此外,通过设计独特但具有挑战性的培训政策,可以克服特定于应用的挑战,例如各种各样的设备和获取大型数据集的不可行性。我们在多达10台重量机器(5台下体和5台上体)和4台自由重量练习上评估ProxiFit,在可穿戴和标牌模式下,19名用户,在3个健身房,超过14个月,并验证对用户和天气变化,空间和旋转设备位置偏差以及邻近机器干扰的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ProxiFit
Although many works bring exercise monitoring to smartphone and smartwatch, inertial sensors used in such systems require device to be in motion to detect exercises. We introduce ProxiFit, a highly practical on-device exercise monitoring system capable of classifying and counting exercises even if the device stays still. Utilizing novel proximity sensing of natural magnetism in exercise equipment, ProxiFit brings (1) a new category of exercise not involving device motion such as lower-body machine exercise, and (2) a new off-body exercise monitoring mode where a smartphone can be conveniently viewed in front of the user during workouts. ProxiFit addresses common issues of faint magnetic sensing by choosing appropriate preprocessing, negating adversarial motion artifacts, and designing a lightweight yet noise-tolerant classifier. Also, application-specific challenges such as a wide variety of equipment and the impracticality of obtaining large datasets are overcome by devising a unique yet challenging training policy. We evaluate ProxiFit on up to 10 weight machines (5 lower- and 5 upper-body) and 4 free-weight exercises, on both wearable and signage mode, with 19 users, at 3 gyms, over 14 months, and verify robustness against user and weather variations, spatial and rotational device location deviations, and neighboring machine interference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines UniFi PASTEL Unobtrusive Air Leakage Estimation for Earables with In-ear Microphones PyroSense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1