Lei Wang, Xingwei Wang, Dalin Zhang, Xiaolei Ma, Yong Zhang, Haipeng Dai, Chenren Xu, Zhijun Li, Tao Gu
{"title":"随时了解你的心脏状况","authors":"Lei Wang, Xingwei Wang, Dalin Zhang, Xiaolei Ma, Yong Zhang, Haipeng Dai, Chenren Xu, Zhijun Li, Tao Gu","doi":"10.1145/3610871","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG) monitoring has been widely explored in detecting and diagnosing cardiovascular diseases due to its accuracy, simplicity, and sensitivity. However, medical- or commercial-grade ECG monitoring devices can be costly for people who want to monitor their ECG on a daily basis. These devices typically require several electrodes to be attached to the human body which is inconvenient for continuous monitoring. To enable low-cost measurement of ECG signals with off-the-shelf devices on a daily basis, in this paper, we propose a novel ECG sensing system that uses acceleration data collected from a smartphone. Our system offers several advantages over previous systems, including low cost, ease of use, location and user independence, and high accuracy. We design a two-tiered denoising process, comprising SWT and Soft-Thresholding, to effectively eliminate interference caused by respiration, body, and hand movements. Finally, we develop a multi-level deep learning recovery model to achieve efficient, real-time and user-independent ECG measurement on commercial mobile phones. We conduct extensive experiments with 30 participants (with nearly 36,000 heartbeat samples) under a user-independent scenario. The average errors of the PR interval, QRS interval, QT interval, and RR interval are 12.02 ms, 16.9 ms, 16.64 ms, and 1.84 ms, respectively. As a case study, we also demonstrate the strong capability of our system in signal recovery for patients with common heart diseases, including tachycardia, bradycardia, arrhythmia, unstable angina, and myocardial infarction.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"45 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowing Your Heart Condition Anytime\",\"authors\":\"Lei Wang, Xingwei Wang, Dalin Zhang, Xiaolei Ma, Yong Zhang, Haipeng Dai, Chenren Xu, Zhijun Li, Tao Gu\",\"doi\":\"10.1145/3610871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocardiogram (ECG) monitoring has been widely explored in detecting and diagnosing cardiovascular diseases due to its accuracy, simplicity, and sensitivity. However, medical- or commercial-grade ECG monitoring devices can be costly for people who want to monitor their ECG on a daily basis. These devices typically require several electrodes to be attached to the human body which is inconvenient for continuous monitoring. To enable low-cost measurement of ECG signals with off-the-shelf devices on a daily basis, in this paper, we propose a novel ECG sensing system that uses acceleration data collected from a smartphone. Our system offers several advantages over previous systems, including low cost, ease of use, location and user independence, and high accuracy. We design a two-tiered denoising process, comprising SWT and Soft-Thresholding, to effectively eliminate interference caused by respiration, body, and hand movements. Finally, we develop a multi-level deep learning recovery model to achieve efficient, real-time and user-independent ECG measurement on commercial mobile phones. We conduct extensive experiments with 30 participants (with nearly 36,000 heartbeat samples) under a user-independent scenario. The average errors of the PR interval, QRS interval, QT interval, and RR interval are 12.02 ms, 16.9 ms, 16.64 ms, and 1.84 ms, respectively. As a case study, we also demonstrate the strong capability of our system in signal recovery for patients with common heart diseases, including tachycardia, bradycardia, arrhythmia, unstable angina, and myocardial infarction.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3610871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Electrocardiogram (ECG) monitoring has been widely explored in detecting and diagnosing cardiovascular diseases due to its accuracy, simplicity, and sensitivity. However, medical- or commercial-grade ECG monitoring devices can be costly for people who want to monitor their ECG on a daily basis. These devices typically require several electrodes to be attached to the human body which is inconvenient for continuous monitoring. To enable low-cost measurement of ECG signals with off-the-shelf devices on a daily basis, in this paper, we propose a novel ECG sensing system that uses acceleration data collected from a smartphone. Our system offers several advantages over previous systems, including low cost, ease of use, location and user independence, and high accuracy. We design a two-tiered denoising process, comprising SWT and Soft-Thresholding, to effectively eliminate interference caused by respiration, body, and hand movements. Finally, we develop a multi-level deep learning recovery model to achieve efficient, real-time and user-independent ECG measurement on commercial mobile phones. We conduct extensive experiments with 30 participants (with nearly 36,000 heartbeat samples) under a user-independent scenario. The average errors of the PR interval, QRS interval, QT interval, and RR interval are 12.02 ms, 16.9 ms, 16.64 ms, and 1.84 ms, respectively. As a case study, we also demonstrate the strong capability of our system in signal recovery for patients with common heart diseases, including tachycardia, bradycardia, arrhythmia, unstable angina, and myocardial infarction.