微型摄像头

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2023-09-27 DOI:10.1145/3610921
Yongquan Hu, Hui-Shyong Yeo, Mingyue Yuan, Haoran Fan, Don Samitha Elvitigala, Wen Hu, Aaron Quigley
{"title":"微型摄像头","authors":"Yongquan Hu, Hui-Shyong Yeo, Mingyue Yuan, Haoran Fan, Don Samitha Elvitigala, Wen Hu, Aaron Quigley","doi":"10.1145/3610921","DOIUrl":null,"url":null,"abstract":"The primary focus of this research is the discreet and subtle everyday contact interactions between mobile phones and their surrounding surfaces. Such interactions are anticipated to facilitate mobile context awareness, encompassing aspects such as dispensing medication updates, intelligently switching modes (e.g., silent mode), or initiating commands (e.g., deactivating an alarm). We introduce MicroCam, a contact-based sensing system that employs smartphone IMU data to detect the routine state of phone placement and utilizes a built-in microscope camera to capture intricate surface details. In particular, a natural dataset is collected to acquire authentic surface textures in situ for training and testing. Moreover, we optimize the deep neural network component of the algorithm, based on continual learning, to accurately discriminate between object categories (e.g., tables) and material constituents (e.g., wood). Experimental results highlight the superior accuracy, robustness and generalization of the proposed method. Lastly, we conducted a comprehensive discussion centered on our prototype, encompassing topics such as system performance and potential applications and scenarios.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"46 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MicroCam\",\"authors\":\"Yongquan Hu, Hui-Shyong Yeo, Mingyue Yuan, Haoran Fan, Don Samitha Elvitigala, Wen Hu, Aaron Quigley\",\"doi\":\"10.1145/3610921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary focus of this research is the discreet and subtle everyday contact interactions between mobile phones and their surrounding surfaces. Such interactions are anticipated to facilitate mobile context awareness, encompassing aspects such as dispensing medication updates, intelligently switching modes (e.g., silent mode), or initiating commands (e.g., deactivating an alarm). We introduce MicroCam, a contact-based sensing system that employs smartphone IMU data to detect the routine state of phone placement and utilizes a built-in microscope camera to capture intricate surface details. In particular, a natural dataset is collected to acquire authentic surface textures in situ for training and testing. Moreover, we optimize the deep neural network component of the algorithm, based on continual learning, to accurately discriminate between object categories (e.g., tables) and material constituents (e.g., wood). Experimental results highlight the superior accuracy, robustness and generalization of the proposed method. Lastly, we conducted a comprehensive discussion centered on our prototype, encompassing topics such as system performance and potential applications and scenarios.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3610921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

本研究的主要焦点是手机与其周围表面之间的日常接触互动。预计这样的交互将促进移动上下文感知,包括诸如分配药物更新,智能切换模式(例如,静音模式)或启动命令(例如,停用警报)等方面。我们介绍了MicroCam,这是一种基于接触的传感系统,它利用智能手机IMU数据来检测手机放置的常规状态,并利用内置的显微镜相机来捕捉复杂的表面细节。特别是,收集自然数据集以获取真实的表面纹理,用于训练和测试。此外,基于持续学习,我们优化了算法的深度神经网络组件,以准确区分对象类别(例如,桌子)和材料成分(例如,木材)。实验结果表明,该方法具有较好的准确性、鲁棒性和泛化性。最后,我们以原型为中心进行了全面的讨论,包括系统性能和潜在的应用程序和场景等主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MicroCam
The primary focus of this research is the discreet and subtle everyday contact interactions between mobile phones and their surrounding surfaces. Such interactions are anticipated to facilitate mobile context awareness, encompassing aspects such as dispensing medication updates, intelligently switching modes (e.g., silent mode), or initiating commands (e.g., deactivating an alarm). We introduce MicroCam, a contact-based sensing system that employs smartphone IMU data to detect the routine state of phone placement and utilizes a built-in microscope camera to capture intricate surface details. In particular, a natural dataset is collected to acquire authentic surface textures in situ for training and testing. Moreover, we optimize the deep neural network component of the algorithm, based on continual learning, to accurately discriminate between object categories (e.g., tables) and material constituents (e.g., wood). Experimental results highlight the superior accuracy, robustness and generalization of the proposed method. Lastly, we conducted a comprehensive discussion centered on our prototype, encompassing topics such as system performance and potential applications and scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines UniFi PASTEL Unobtrusive Air Leakage Estimation for Earables with In-ear Microphones PyroSense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1