{"title":"宇宙变化的动力学混合","authors":"Xucheng Gan, Di Liu","doi":"10.1007/jhep11(2023)031","DOIUrl":null,"url":null,"abstract":"A bstract The portal connecting the invisible and visible sectors is one of the most natural explanations of the dark world. However, the early-time dark matter production via the portal faces extremely stringent late-time constraints. To solve such tension, we construct the scalar-controlled kinetic mixing varying with the ultralight CP-even scalar’s cosmological evolution. To realize this and eliminate the constant mixing, we couple the ultralight scalar within 10 − 33 eV ≲ m 0 ≪ eV with the heavy doubly charged messengers and impose the ℤ 2 symmetry under the dark charge conjugation. Via the varying mixing, the keV – MeV dark photon dark matter is produced through the early-time freeze-in when the scalar is misaligned from the origin and free from the late-time exclusions when the scalar does the damped oscillation and dynamically sets the kinetic mixing. We also find that the scalar-photon coupling emerges from the underlying physics, which changes the cosmological history and provides the experimental targets based on the fine-structure constant variation and the equivalence principle violation. To ensure the scalar naturalness, we discretely re-establish the broken shift symmetry by embedding the minimal model into the ℤ N -protected model. When N ~ 10, the scalar’s mass quantum correction can be suppressed much below 10 − 33 eV.","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":"73 2","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cosmologically varying kinetic mixing\",\"authors\":\"Xucheng Gan, Di Liu\",\"doi\":\"10.1007/jhep11(2023)031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract The portal connecting the invisible and visible sectors is one of the most natural explanations of the dark world. However, the early-time dark matter production via the portal faces extremely stringent late-time constraints. To solve such tension, we construct the scalar-controlled kinetic mixing varying with the ultralight CP-even scalar’s cosmological evolution. To realize this and eliminate the constant mixing, we couple the ultralight scalar within 10 − 33 eV ≲ m 0 ≪ eV with the heavy doubly charged messengers and impose the ℤ 2 symmetry under the dark charge conjugation. Via the varying mixing, the keV – MeV dark photon dark matter is produced through the early-time freeze-in when the scalar is misaligned from the origin and free from the late-time exclusions when the scalar does the damped oscillation and dynamically sets the kinetic mixing. We also find that the scalar-photon coupling emerges from the underlying physics, which changes the cosmological history and provides the experimental targets based on the fine-structure constant variation and the equivalence principle violation. To ensure the scalar naturalness, we discretely re-establish the broken shift symmetry by embedding the minimal model into the ℤ N -protected model. When N ~ 10, the scalar’s mass quantum correction can be suppressed much below 10 − 33 eV.\",\"PeriodicalId\":48906,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"73 2\",\"pages\":\"0\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/jhep11(2023)031\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)031","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
A bstract The portal connecting the invisible and visible sectors is one of the most natural explanations of the dark world. However, the early-time dark matter production via the portal faces extremely stringent late-time constraints. To solve such tension, we construct the scalar-controlled kinetic mixing varying with the ultralight CP-even scalar’s cosmological evolution. To realize this and eliminate the constant mixing, we couple the ultralight scalar within 10 − 33 eV ≲ m 0 ≪ eV with the heavy doubly charged messengers and impose the ℤ 2 symmetry under the dark charge conjugation. Via the varying mixing, the keV – MeV dark photon dark matter is produced through the early-time freeze-in when the scalar is misaligned from the origin and free from the late-time exclusions when the scalar does the damped oscillation and dynamically sets the kinetic mixing. We also find that the scalar-photon coupling emerges from the underlying physics, which changes the cosmological history and provides the experimental targets based on the fine-structure constant variation and the equivalence principle violation. To ensure the scalar naturalness, we discretely re-establish the broken shift symmetry by embedding the minimal model into the ℤ N -protected model. When N ~ 10, the scalar’s mass quantum correction can be suppressed much below 10 − 33 eV.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).