{"title":"从射线到喷雾:在全数值中微子代码中增强振幅和驯服快速振荡","authors":"Michele Maltoni","doi":"10.1007/jhep11(2023)033","DOIUrl":null,"url":null,"abstract":"A bstract In this note we describe how to complement the neutrino evolution matrix calculated at a given energy and trajectory with additional information which allows to reliably extrapolate it to nearby energies or trajectories without repeating the full computation. Our method works for arbitrary matter density profiles, can be applied to any propagation model described by an Hamiltonian, and exactly guarantees the unitarity of the evolution matrix. As a straightforward application, we show how to enhance the calculation of the theoretical predictions for experimentally measured quantities, so that they remain accurate even in the presence of fast neutrino oscillations. Furthermore, the ability to “move around” a given energy and trajectory opens the door to precise interpolation of the oscillation amplitudes within a grid of tabulated values, with potential benefits for the computation speed of Monte-Carlo codes. We also provide a set of examples to illustrate the most prominent features of our approach.","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":"63 9","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From ray to spray: augmenting amplitudes and taming fast oscillations in fully numerical neutrino codes\",\"authors\":\"Michele Maltoni\",\"doi\":\"10.1007/jhep11(2023)033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract In this note we describe how to complement the neutrino evolution matrix calculated at a given energy and trajectory with additional information which allows to reliably extrapolate it to nearby energies or trajectories without repeating the full computation. Our method works for arbitrary matter density profiles, can be applied to any propagation model described by an Hamiltonian, and exactly guarantees the unitarity of the evolution matrix. As a straightforward application, we show how to enhance the calculation of the theoretical predictions for experimentally measured quantities, so that they remain accurate even in the presence of fast neutrino oscillations. Furthermore, the ability to “move around” a given energy and trajectory opens the door to precise interpolation of the oscillation amplitudes within a grid of tabulated values, with potential benefits for the computation speed of Monte-Carlo codes. We also provide a set of examples to illustrate the most prominent features of our approach.\",\"PeriodicalId\":48906,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"63 9\",\"pages\":\"0\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/jhep11(2023)033\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)033","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
From ray to spray: augmenting amplitudes and taming fast oscillations in fully numerical neutrino codes
A bstract In this note we describe how to complement the neutrino evolution matrix calculated at a given energy and trajectory with additional information which allows to reliably extrapolate it to nearby energies or trajectories without repeating the full computation. Our method works for arbitrary matter density profiles, can be applied to any propagation model described by an Hamiltonian, and exactly guarantees the unitarity of the evolution matrix. As a straightforward application, we show how to enhance the calculation of the theoretical predictions for experimentally measured quantities, so that they remain accurate even in the presence of fast neutrino oscillations. Furthermore, the ability to “move around” a given energy and trajectory opens the door to precise interpolation of the oscillation amplitudes within a grid of tabulated values, with potential benefits for the computation speed of Monte-Carlo codes. We also provide a set of examples to illustrate the most prominent features of our approach.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).