{"title":"水下爆炸及其对加固钢板冲击的有限元-有限体积模拟","authors":"Valdani Arman Jafari, Armen Adamian","doi":"10.24425/ame.2020.131681","DOIUrl":null,"url":null,"abstract":"Marine structures are one of the most important industrial and military equipment in each country that should be protected against external forces. The main aim of this paper is a detailed investigation of the underwater explosion (UNDEX) and its effects on marine structures. For this purpose, the UNDEX structure was studied qualitatively and quantitatively using numerical methods. Then, the effects of blast waves on a marine structure reinforced by perpendicular blades were investigated. Finite element and finite volume schemes were used for discretization of the governing equations in the solid and fluid media, respectively. Also, for fluid-structure interaction (FSI), results of fluid and solid media were mapped to each other using the two-way FSI coupling methods. A comparison of numerical results with the empirical formula revealed that the trend of pressure-time curves was reasonable, approving the validity of the numerical method. Moreover, the numerical results indicated that detonation of 1 kg trinitrotoluene (TNT) creates a pressure wave with maximum amplitude of 24 MPa at a distance of 2 m. Also, it was found that the reinforcement blades can be used to improve the resistance of structures against explosive charges, which also results in the reduction of structures deformation.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"16 14","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finite element-finite volume simulation of underwater explosion and its impact on a reinforced steel plate\",\"authors\":\"Valdani Arman Jafari, Armen Adamian\",\"doi\":\"10.24425/ame.2020.131681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marine structures are one of the most important industrial and military equipment in each country that should be protected against external forces. The main aim of this paper is a detailed investigation of the underwater explosion (UNDEX) and its effects on marine structures. For this purpose, the UNDEX structure was studied qualitatively and quantitatively using numerical methods. Then, the effects of blast waves on a marine structure reinforced by perpendicular blades were investigated. Finite element and finite volume schemes were used for discretization of the governing equations in the solid and fluid media, respectively. Also, for fluid-structure interaction (FSI), results of fluid and solid media were mapped to each other using the two-way FSI coupling methods. A comparison of numerical results with the empirical formula revealed that the trend of pressure-time curves was reasonable, approving the validity of the numerical method. Moreover, the numerical results indicated that detonation of 1 kg trinitrotoluene (TNT) creates a pressure wave with maximum amplitude of 24 MPa at a distance of 2 m. Also, it was found that the reinforcement blades can be used to improve the resistance of structures against explosive charges, which also results in the reduction of structures deformation.\",\"PeriodicalId\":45083,\"journal\":{\"name\":\"Archive of Mechanical Engineering\",\"volume\":\"16 14\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ame.2020.131681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ame.2020.131681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Finite element-finite volume simulation of underwater explosion and its impact on a reinforced steel plate
Marine structures are one of the most important industrial and military equipment in each country that should be protected against external forces. The main aim of this paper is a detailed investigation of the underwater explosion (UNDEX) and its effects on marine structures. For this purpose, the UNDEX structure was studied qualitatively and quantitatively using numerical methods. Then, the effects of blast waves on a marine structure reinforced by perpendicular blades were investigated. Finite element and finite volume schemes were used for discretization of the governing equations in the solid and fluid media, respectively. Also, for fluid-structure interaction (FSI), results of fluid and solid media were mapped to each other using the two-way FSI coupling methods. A comparison of numerical results with the empirical formula revealed that the trend of pressure-time curves was reasonable, approving the validity of the numerical method. Moreover, the numerical results indicated that detonation of 1 kg trinitrotoluene (TNT) creates a pressure wave with maximum amplitude of 24 MPa at a distance of 2 m. Also, it was found that the reinforcement blades can be used to improve the resistance of structures against explosive charges, which also results in the reduction of structures deformation.
期刊介绍:
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.