对“移动平均方法”和“预测国家水稻生产能力”的精确度比较

Mardiansyah Mardiansyah, Firman Amir
{"title":"对“移动平均方法”和“预测国家水稻生产能力”的精确度比较","authors":"Mardiansyah Mardiansyah, Firman Amir","doi":"10.34010/komputa.v12i2.10602","DOIUrl":null,"url":null,"abstract":"Pengelolaan persediaan padi merupakan aspek penting yang perlu ditingkatkan oleh para pemangku kepentingan guna mencapai keseimbangan antara persediaan dan konsumsi beras. Bullwhip Effect (BE) telah menjadi perhatian khusus dalam rantai pasokan selama pandemi, terutama dengan adanya komponen permintaan musiman dan nonmusiman. Peramalan kebutuhan produksi padi diperlukan untuk mengatasi masalah dalam pengolahan data dan situasi di lapangan. Perangkat lunak seperti Production and Operations Management (POM) dapat digunakan untuk peramalan menggunakan logika fuzzy. Dalam era Industri 4.0, sustainable smart manufacturing menjadi hal yang penting. Proyeksi kebutuhan produksi beras nasional dilakukan dengan menggunakan metode moving average dan metode exponential smoothing. Pengujian akurasi dilakukan dengan peramalan menggunakan metode moving average dan exponential smoothing dengan data produksi padi tahun 2010-2019, kemudian hasil peramalan tahun 2020 dari kedua metode tersebut akan dibandingkan dengan data real dan akan diketahui metode mana yang paling mendekati data real. Tujuan utama penelitian ini adalah untuk membandingkan dua metode yaitu metode moving average dan metode exponential smoothing yang digunakan pada perangkat lunak berbasis fuzzy. Hasil pengujian akurasi peramalan produksi beras dengan menggunakan metode moving average dan exponential smoothing yang telah dilakukan menunjukkan bahwa metode moving average lebih akurat dengan selisih 1,0089% dari data sebenarnya, sedangkan metode exponential smoothing memiliki selisih 12,0051% dari data sebenarnya.
","PeriodicalId":477061,"journal":{"name":"Komputa: Jurnal Ilmiah Komputer dan Informatika","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Perbandingan Akurasi Metode Moving Average dan Metode Exponensial Smoothing dalam Memprediksi Kapasitas Produksi Padi Nasional\",\"authors\":\"Mardiansyah Mardiansyah, Firman Amir\",\"doi\":\"10.34010/komputa.v12i2.10602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pengelolaan persediaan padi merupakan aspek penting yang perlu ditingkatkan oleh para pemangku kepentingan guna mencapai keseimbangan antara persediaan dan konsumsi beras. Bullwhip Effect (BE) telah menjadi perhatian khusus dalam rantai pasokan selama pandemi, terutama dengan adanya komponen permintaan musiman dan nonmusiman. Peramalan kebutuhan produksi padi diperlukan untuk mengatasi masalah dalam pengolahan data dan situasi di lapangan. Perangkat lunak seperti Production and Operations Management (POM) dapat digunakan untuk peramalan menggunakan logika fuzzy. Dalam era Industri 4.0, sustainable smart manufacturing menjadi hal yang penting. Proyeksi kebutuhan produksi beras nasional dilakukan dengan menggunakan metode moving average dan metode exponential smoothing. Pengujian akurasi dilakukan dengan peramalan menggunakan metode moving average dan exponential smoothing dengan data produksi padi tahun 2010-2019, kemudian hasil peramalan tahun 2020 dari kedua metode tersebut akan dibandingkan dengan data real dan akan diketahui metode mana yang paling mendekati data real. Tujuan utama penelitian ini adalah untuk membandingkan dua metode yaitu metode moving average dan metode exponential smoothing yang digunakan pada perangkat lunak berbasis fuzzy. Hasil pengujian akurasi peramalan produksi beras dengan menggunakan metode moving average dan exponential smoothing yang telah dilakukan menunjukkan bahwa metode moving average lebih akurat dengan selisih 1,0089% dari data sebenarnya, sedangkan metode exponential smoothing memiliki selisih 12,0051% dari data sebenarnya.
\",\"PeriodicalId\":477061,\"journal\":{\"name\":\"Komputa: Jurnal Ilmiah Komputer dan Informatika\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Komputa: Jurnal Ilmiah Komputer dan Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34010/komputa.v12i2.10602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Komputa: Jurnal Ilmiah Komputer dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34010/komputa.v12i2.10602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大米供应管理是利益相关者在维持库存和大米消费之间平衡的一个重要方面。在大流行期间,特别是在季节性和非季节性需求成分的情况下,靶心效应一直是供应链中特别关注的问题。粮食生产的必要性是克服数据处理和现场情况问题所必需的。生产和操作管理等软件可以用模糊的逻辑进行预测。在工业4.0的时代,可持续的智能制造已成为一件大事。国家大米生产需求的预测是使用移动平均方法和出口平法实现的。测试准确率是通过将稻谷生产数据与2010年至2019年的移动平均和扩展稻谷数据进行比较,然后将2020年这两种方法的预测结果与真实数据进行比较,并将知道哪些方法最接近真实数据。本研究的主要目标是比较在基于模糊的软件中使用的两种移动平均方法和exponal平滑方法。通过使用移动平均方法和出口平衡法对大米生产的可比性检测结果表明,移动平均平衡法比实际数据差1,0089%,而扩展平衡法的间距为12.0051%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analisis Perbandingan Akurasi Metode Moving Average dan Metode Exponensial Smoothing dalam Memprediksi Kapasitas Produksi Padi Nasional
Pengelolaan persediaan padi merupakan aspek penting yang perlu ditingkatkan oleh para pemangku kepentingan guna mencapai keseimbangan antara persediaan dan konsumsi beras. Bullwhip Effect (BE) telah menjadi perhatian khusus dalam rantai pasokan selama pandemi, terutama dengan adanya komponen permintaan musiman dan nonmusiman. Peramalan kebutuhan produksi padi diperlukan untuk mengatasi masalah dalam pengolahan data dan situasi di lapangan. Perangkat lunak seperti Production and Operations Management (POM) dapat digunakan untuk peramalan menggunakan logika fuzzy. Dalam era Industri 4.0, sustainable smart manufacturing menjadi hal yang penting. Proyeksi kebutuhan produksi beras nasional dilakukan dengan menggunakan metode moving average dan metode exponential smoothing. Pengujian akurasi dilakukan dengan peramalan menggunakan metode moving average dan exponential smoothing dengan data produksi padi tahun 2010-2019, kemudian hasil peramalan tahun 2020 dari kedua metode tersebut akan dibandingkan dengan data real dan akan diketahui metode mana yang paling mendekati data real. Tujuan utama penelitian ini adalah untuk membandingkan dua metode yaitu metode moving average dan metode exponential smoothing yang digunakan pada perangkat lunak berbasis fuzzy. Hasil pengujian akurasi peramalan produksi beras dengan menggunakan metode moving average dan exponential smoothing yang telah dilakukan menunjukkan bahwa metode moving average lebih akurat dengan selisih 1,0089% dari data sebenarnya, sedangkan metode exponential smoothing memiliki selisih 12,0051% dari data sebenarnya.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementasi Aplikasi Steganografi Berbasis Web Menggunakan Algoritma LSB dan BPCS Perbandingan Algoritma Sobel dan Canny untuk Deteksi Tepi Citra Daun Lidah Buaya Sistem Penentuan Jenis Promosi Berdasarkan Tingkat Loyalitas Pelanggan di CV. XYZ Object Tracking Menggunakan Algoritma You Only Look Once (YOLO)v8 untuk Menghitung Kendaraan IMPLEMENTASI ALGORITMA APRIORI UNTUK MENENTUKAN PRODUK TERLARIS PADA TOKO I_DOCRAFT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1