首页 > 最新文献

Komputa: Jurnal Ilmiah Komputer dan Informatika最新文献

英文 中文
Sistem Penentuan Jenis Promosi Berdasarkan Tingkat Loyalitas Pelanggan di CV. XYZ 根据简历中顾客的忠诚度来确定类型的促销活动。XYZ
Pub Date : 2023-11-04 DOI: 10.34010/komputa.v12i2.9405
Riani Lubis, Tati Harihayati Mardzuki, Aditya Akhmad Gufron
CV. XYZ is a company engaged in selling fabrics. The company's current customers are around 372 customers, of which 81% or around 301 customers only make transactions less than 10 times and 19% or around 71 customers make transactions more than 10 times, this shows a low level of customer loyalty towards the company. Company owners currently have difficulty determining the type of promotion that will be given to each customer based on their level of loyalty. The method used to segment customers is the Recency, Frequency and Monetary (RFM) method and delivering promotions to customers using WhatsApp API Gateway Services. The results of this RFM method can make it easier for company owners to determine the type of promotion that will be given to each customer as well as the delivery of the promotion in an effort to increase customer loyalty to the company. Of the 24 customers used as sample data, the Most Valuable Customer group has 4 customers, the Most Growable Customer group has 15 customers, the Migrator group has 5 customers and the Below Zeros group has 0 customers.
简历。XYZ是一家从事纺织品销售的公司。公司目前的客户约为372名,其中81%(约301名)的客户交易次数少于10次,19%(约71名)的客户交易次数超过10次,客户对公司的忠诚度较低。公司老板目前很难根据顾客的忠诚度来决定给他们什么样的促销活动。用于细分客户的方法是最近,频率和货币(RFM)方法,并使用WhatsApp API网关服务向客户提供促销。这种RFM方法的结果可以使公司所有者更容易地确定将给予每个客户的促销类型以及促销的交付,以增加客户对公司的忠诚度。在作为样本数据使用的24个客户中,最有价值的客户组有4个客户,最可增长的客户组有15个客户,迁移者组有5个客户,低于零组有0个客户。
{"title":"Sistem Penentuan Jenis Promosi Berdasarkan Tingkat Loyalitas Pelanggan di CV. XYZ","authors":"Riani Lubis, Tati Harihayati Mardzuki, Aditya Akhmad Gufron","doi":"10.34010/komputa.v12i2.9405","DOIUrl":"https://doi.org/10.34010/komputa.v12i2.9405","url":null,"abstract":"CV. XYZ is a company engaged in selling fabrics. The company's current customers are around 372 customers, of which 81% or around 301 customers only make transactions less than 10 times and 19% or around 71 customers make transactions more than 10 times, this shows a low level of customer loyalty towards the company. Company owners currently have difficulty determining the type of promotion that will be given to each customer based on their level of loyalty. The method used to segment customers is the Recency, Frequency and Monetary (RFM) method and delivering promotions to customers using WhatsApp API Gateway Services. The results of this RFM method can make it easier for company owners to determine the type of promotion that will be given to each customer as well as the delivery of the promotion in an effort to increase customer loyalty to the company. Of the 24 customers used as sample data, the Most Valuable Customer group has 4 customers, the Most Growable Customer group has 15 customers, the Migrator group has 5 customers and the Below Zeros group has 0 customers.","PeriodicalId":477061,"journal":{"name":"Komputa: Jurnal Ilmiah Komputer dan Informatika","volume":"36 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135775655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Object Tracking Menggunakan Algoritma You Only Look Once (YOLO)v8 untuk Menghitung Kendaraan 目标跟踪算法You Only Look Once (YOLO)v8
Pub Date : 2023-11-04 DOI: 10.34010/komputa.v12i2.10654
Nurhaliza Juliyani Hayati, Dayan Singasatia, Muhamad Rafi Muttaqin
Vehicles are a means of transportation that have existed from ancient times until now, many people use vehicles such as cars and motorbikes. Enumeration of types and numbers of vehicles is carried out to collect traffic data information. In obtaining data parameters for the number of vehicles, manual calculations are usually prone to errors and take a lot of time and energy. The application of Artificial Intelligence such as object detection is a field of computer vision. In intelligent transportation systems, traffic data is the key to conducting research and designing a system. To overcome the problem, researchers carried out object tracking using the You Only Look Once (YOLO) v8 algorithm to detect the type and count the number of vehicles. The methodology applied is the AI Project Cycle stages which use problem scoping, data acquisition, data exploration, modeling, and confusion matrix evaluation. The results of the confusion matrix evaluation obtained an accuracy level of 89%, precision of 89%, recall of 90% and a weighted comparison of precision and recall obtained an F1-Score value of 89%. Thus, the You Only Look Once (YOLO) v8 algorithm is accurate enough to detect object tracking to calculate vehicles.
车辆是一种从古至今一直存在的交通工具,许多人使用汽车和摩托车等交通工具。通过列举车辆种类和数量来收集交通数据信息。在获取车辆数量的数据参数时,人工计算往往容易出错,耗费大量的时间和精力。物体检测等人工智能的应用是计算机视觉的一个领域。在智能交通系统中,交通数据是进行系统研究和设计的关键。为了克服这个问题,研究人员使用You Only Look Once (YOLO) v8算法进行了目标跟踪,以检测车辆的类型并计算车辆的数量。应用的方法是人工智能项目周期阶段,使用问题范围界定、数据采集、数据探索、建模和混淆矩阵评估。混淆矩阵评价结果的准确率为89%,准确率为89%,召回率为90%,准确率和召回率加权比较的F1-Score值为89%。因此,You Only Look Once (YOLO) v8算法足够精确,可以检测物体跟踪以计算车辆。
{"title":"Object Tracking Menggunakan Algoritma You Only Look Once (YOLO)v8 untuk Menghitung Kendaraan","authors":"Nurhaliza Juliyani Hayati, Dayan Singasatia, Muhamad Rafi Muttaqin","doi":"10.34010/komputa.v12i2.10654","DOIUrl":"https://doi.org/10.34010/komputa.v12i2.10654","url":null,"abstract":"Vehicles are a means of transportation that have existed from ancient times until now, many people use vehicles such as cars and motorbikes. Enumeration of types and numbers of vehicles is carried out to collect traffic data information. In obtaining data parameters for the number of vehicles, manual calculations are usually prone to errors and take a lot of time and energy. The application of Artificial Intelligence such as object detection is a field of computer vision. In intelligent transportation systems, traffic data is the key to conducting research and designing a system. To overcome the problem, researchers carried out object tracking using the You Only Look Once (YOLO) v8 algorithm to detect the type and count the number of vehicles. The methodology applied is the AI Project Cycle stages which use problem scoping, data acquisition, data exploration, modeling, and confusion matrix evaluation. The results of the confusion matrix evaluation obtained an accuracy level of 89%, precision of 89%, recall of 90% and a weighted comparison of precision and recall obtained an F1-Score value of 89%. Thus, the You Only Look Once (YOLO) v8 algorithm is accurate enough to detect object tracking to calculate vehicles.","PeriodicalId":477061,"journal":{"name":"Komputa: Jurnal Ilmiah Komputer dan Informatika","volume":"36 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135775826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementasi Aplikasi Steganografi Berbasis Web Menggunakan Algoritma LSB dan BPCS 使用 LSB 和 BPCS 算法实现基于网络的隐写术应用
Pub Date : 2023-11-04 DOI: 10.34010/komputa.v12i2.10319
Laily Farkhah Adhimah, Isti Nurhafiyah, Adnan Aditya Muntahar, Fandi Kristiaji, Dinar Mustofa
Steganography is a method for concealing sensitive information in seemingly unremarkable data. In recent years, the use of steganography in web applications has become popular due to its accessibility and ability to conceal data in various types of media. Implementing a web-based steganography program that makes use of the Bit-Plane Complexity and Least Significant Bit algorithms is the aim of this project. To enable users to access the application through a browser, the system is constructed utilizing web technologies like HTML, CSS, and JavaScript during the design phase. The LSB and BPCS algorithms are employed as methods to embed secret data into user-selected images. The least significant bit of each image pixel is utilized to hold a secret piece of information using the straightforward steganography technique known as LSB. On the other hand, BPCS is a more complex steganography method that combines spatial and frequency domain analysis to hide data within high-quality images. The findings of this study show that the technique of hiding sensitive information within photos is successfully implemented by the web-based steganography program employing the LSB and BPCS algorithms.
隐写术是一种在看似不起眼的数据中隐藏敏感信息的方法。近年来,隐写术在web应用程序中的使用已经变得流行,因为它的可访问性和在各种类型的媒体中隐藏数据的能力。实现一个基于网络的隐写程序,利用位平面复杂度和最低有效位算法是这个项目的目的。为了使用户能够通过浏览器访问应用程序,系统在设计阶段利用HTML、CSS和JavaScript等web技术构建。采用LSB和BPCS算法将秘密数据嵌入到用户选择的图像中。使用称为LSB的直接隐写技术,利用每个图像像素的最低有效位来保存秘密信息。另一方面,BPCS是一种更复杂的隐写方法,它结合了空间和频域分析,将数据隐藏在高质量的图像中。研究结果表明,采用LSB和BPCS算法的基于web的隐写程序成功地实现了隐藏照片中敏感信息的技术。
{"title":"Implementasi Aplikasi Steganografi Berbasis Web Menggunakan Algoritma LSB dan BPCS","authors":"Laily Farkhah Adhimah, Isti Nurhafiyah, Adnan Aditya Muntahar, Fandi Kristiaji, Dinar Mustofa","doi":"10.34010/komputa.v12i2.10319","DOIUrl":"https://doi.org/10.34010/komputa.v12i2.10319","url":null,"abstract":"Steganography is a method for concealing sensitive information in seemingly unremarkable data. In recent years, the use of steganography in web applications has become popular due to its accessibility and ability to conceal data in various types of media. Implementing a web-based steganography program that makes use of the Bit-Plane Complexity and Least Significant Bit algorithms is the aim of this project. To enable users to access the application through a browser, the system is constructed utilizing web technologies like HTML, CSS, and JavaScript during the design phase. The LSB and BPCS algorithms are employed as methods to embed secret data into user-selected images. The least significant bit of each image pixel is utilized to hold a secret piece of information using the straightforward steganography technique known as LSB. On the other hand, BPCS is a more complex steganography method that combines spatial and frequency domain analysis to hide data within high-quality images. The findings of this study show that the technique of hiding sensitive information within photos is successfully implemented by the web-based steganography program employing the LSB and BPCS algorithms.","PeriodicalId":477061,"journal":{"name":"Komputa: Jurnal Ilmiah Komputer dan Informatika","volume":"36 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135775653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perbandingan Algoritma Sobel dan Canny untuk Deteksi Tepi Citra Daun Lidah Buaya 用于芦荟叶图像边缘检测的 Sobel 算法和 Canny 算法比较
Pub Date : 2023-11-04 DOI: 10.34010/komputa.v12i2.10997
Louis Maximillian, Yosefina Finsensia Riti, Mario Anugraha Agung, Yohanes Junardi Palis
Penyakit daun yang umum terjadi pada tanaman lidah buaya, seperti busuk daun, busuk akar, infeksi bakteri, dan serangan virus, dapat menimbulkan kerusakan yang cukup parah. Identifikasi penyakit-penyakit tersebut masih mengandalkan pengalaman petani dan seringkali menimbulkan interpretasi yang salah. Solusi modern telah ditemukan melalui penerapan teknologi informasi, khususnya di bidang pengolahan citra digital. Dengan menggunakan metode ini, diagnosis penyakit pada daun lidah buaya dapat ditingkatkan melalui deteksi tepi objek pada gambar daun. Hasil deteksi tepi ini memungkinkan mengidentifikasi gejala penyakit dengan lebih akurat. Dalam konteks ini, algoritma Canny dan Sobel, dua algoritma yang umum digunakan untuk deteksi tepi pada gambar, terbukti menjadi pilihan yang efektif. Dengan menggunakan metode tersebut, gambar tepi daun lidah buaya dapat diidentifikasi secara akurat. Ini adalah langkah penting dalam mendukung petani dalam diagnosis dini penyakit dan mengambil tindakan tepat waktu untuk mengatasi masalah ini. Penelitian ini bertujuan untuk mendapatkan algoritma terbaik pendeteksian tepi daun lidah buaya berdasarkan nilai Mean Squared Error (MSE) dan Peak Signal-to-Noise Ratio (PSNR). Hasil pengujian menunjukkan bahwa algoritma Sobel memberikan hasil yang lebih baik dengan rata-rata pengukuran MSE sebesar 2781.88 dan rata-rata PSNR sebesar 14.04, sedangkan algoritma Canny memiliki rata-rata MSE sebesar 3542.02 dan rata-rata PSNR sebesar 12.92.
芦荟植物的叶子很常见的疾病,像腐烂的腐烂的树叶、树根,细菌感染,病毒攻击可以造成相当严重的。农民仍然依靠经验,并经常导致疾病的识别错误的解释。通过应用信息技术,特别是在数字图像处理领域,现代解决方案已经被发现。用这种方法,可以改进诊断疾病的芦荟叶叶子通过物体的图像边缘检测。这些边缘检测使更准确地识别疾病症状成为可能。在这种情况下,Canny和Sobel算法,这两个常用的图像边缘检测算法,被证明是一个有效的选择。通过这种方法,可以准确地识别芦荟叶的边缘。这是支持农民及早诊断疾病和及时采取行动解决问题的重要一步。本研究旨在根据盖革舌叶值(MSE)和Peak signato - noise Ratio (PSNR)的最佳检测算法。索贝尔测试结果表明,算法提供了更好的平均测量结果MSE 2781。88万,平均大小的PSNR 14 . 04,而精明的算法有平均大小的MSE 3542节2和12平均大小的PSNR。92。
{"title":"Perbandingan Algoritma Sobel dan Canny untuk Deteksi Tepi Citra Daun Lidah Buaya","authors":"Louis Maximillian, Yosefina Finsensia Riti, Mario Anugraha Agung, Yohanes Junardi Palis","doi":"10.34010/komputa.v12i2.10997","DOIUrl":"https://doi.org/10.34010/komputa.v12i2.10997","url":null,"abstract":"Penyakit daun yang umum terjadi pada tanaman lidah buaya, seperti busuk daun, busuk akar, infeksi bakteri, dan serangan virus, dapat menimbulkan kerusakan yang cukup parah. Identifikasi penyakit-penyakit tersebut masih mengandalkan pengalaman petani dan seringkali menimbulkan interpretasi yang salah. Solusi modern telah ditemukan melalui penerapan teknologi informasi, khususnya di bidang pengolahan citra digital. Dengan menggunakan metode ini, diagnosis penyakit pada daun lidah buaya dapat ditingkatkan melalui deteksi tepi objek pada gambar daun. Hasil deteksi tepi ini memungkinkan mengidentifikasi gejala penyakit dengan lebih akurat. Dalam konteks ini, algoritma Canny dan Sobel, dua algoritma yang umum digunakan untuk deteksi tepi pada gambar, terbukti menjadi pilihan yang efektif. Dengan menggunakan metode tersebut, gambar tepi daun lidah buaya dapat diidentifikasi secara akurat. Ini adalah langkah penting dalam mendukung petani dalam diagnosis dini penyakit dan mengambil tindakan tepat waktu untuk mengatasi masalah ini. Penelitian ini bertujuan untuk mendapatkan algoritma terbaik pendeteksian tepi daun lidah buaya berdasarkan nilai Mean Squared Error (MSE) dan Peak Signal-to-Noise Ratio (PSNR). Hasil pengujian menunjukkan bahwa algoritma Sobel memberikan hasil yang lebih baik dengan rata-rata pengukuran MSE sebesar 2781.88 dan rata-rata PSNR sebesar 14.04, sedangkan algoritma Canny memiliki rata-rata MSE sebesar 3542.02 dan rata-rata PSNR sebesar 12.92.","PeriodicalId":477061,"journal":{"name":"Komputa: Jurnal Ilmiah Komputer dan Informatika","volume":"36 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135775654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RANCANG BANGUN SISTEM PEMESANAN TIKET PESAWAT BERBASIS WEB 设计一个基于WEB的飞机订购系统
Pub Date : 2023-10-09 DOI: 10.34010/komputa.v12i2.10506
Arief Rachman Hakim, Wiga Maulana Baihaqi
Indonesia is the largest archipelagic country in the world which has very strategic geography. This can bring many opportunities in exploring natural riches and environmental services. For this reason, the existence of reliable and efficient transportation is very important. One means of transportation that is very popular and widely used by the public is airplanes. In this case, aircraft have made a significant contribution in supporting global connectivity, tourism and economic growth in various sectors. Even though airplane transportation has various advantages, there are still shortcomings in the airplane ticket purchasing process which still relies heavily on travel agents or direct purchases through the destination airline. This often causes problems, such as unstable ticket prices and concerns regarding the security of the ticket purchasing process. One innovation that can be a solution to the problem of purchasing plane tickets is the development of an application that provides a platform for purchasing plane tickets from various airlines. This application will combine various ticket options from various airlines on one platform. Apart from that, the application will also ensure the safety and security of passengers by providing the latest information about the availability of facilities on the plane and payment methods that are familiar to users. Thus, this application will provide convenience, comfort and security for prospective passengers in purchasing airline tickets of their choice.
印度尼西亚是世界上最大的群岛国家,地理位置非常具有战略意义。这可以为勘探自然资源和环境服务带来许多机会。因此,可靠和高效的交通工具的存在是非常重要的。一种非常受欢迎并被公众广泛使用的交通工具是飞机。在这种情况下,飞机为支持全球互联互通、旅游业和各个领域的经济增长做出了重大贡献。尽管飞机运输有各种优势,但在机票购买过程中仍然存在不足,仍然严重依赖旅行社或通过目的地航空公司直接购买。这通常会导致一些问题,比如不稳定的票价和对购票过程安全性的担忧。一个可以解决购买机票问题的创新是开发一个应用程序,该应用程序提供了一个从不同航空公司购买机票的平台。这个应用程序将在一个平台上结合不同航空公司的各种机票选择。除此之外,该应用程序还将通过提供有关飞机上设施可用性的最新信息和用户熟悉的付款方式,确保乘客的安全。因此,这个应用程序将提供方便,舒适和安全,为未来的旅客购买机票的选择。
{"title":"RANCANG BANGUN SISTEM PEMESANAN TIKET PESAWAT BERBASIS WEB","authors":"Arief Rachman Hakim, Wiga Maulana Baihaqi","doi":"10.34010/komputa.v12i2.10506","DOIUrl":"https://doi.org/10.34010/komputa.v12i2.10506","url":null,"abstract":"Indonesia is the largest archipelagic country in the world which has very strategic geography. This can bring many opportunities in exploring natural riches and environmental services. For this reason, the existence of reliable and efficient transportation is very important. One means of transportation that is very popular and widely used by the public is airplanes. In this case, aircraft have made a significant contribution in supporting global connectivity, tourism and economic growth in various sectors. Even though airplane transportation has various advantages, there are still shortcomings in the airplane ticket purchasing process which still relies heavily on travel agents or direct purchases through the destination airline. This often causes problems, such as unstable ticket prices and concerns regarding the security of the ticket purchasing process. One innovation that can be a solution to the problem of purchasing plane tickets is the development of an application that provides a platform for purchasing plane tickets from various airlines. This application will combine various ticket options from various airlines on one platform. Apart from that, the application will also ensure the safety and security of passengers by providing the latest information about the availability of facilities on the plane and payment methods that are familiar to users. Thus, this application will provide convenience, comfort and security for prospective passengers in purchasing airline tickets of their choice.","PeriodicalId":477061,"journal":{"name":"Komputa: Jurnal Ilmiah Komputer dan Informatika","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135197110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IMPLEMENTASI ALGORITMA APRIORI UNTUK MENENTUKAN PRODUK TERLARIS PADA TOKO I_DOCRAFT 四月算法的执行,以确定I_DOCRAFT商店的最畅销产品
Pub Date : 2023-10-09 DOI: 10.34010/komputa.v12i2.10904
Anton - Anton, Naufal Naufal
The sales of pajama products on i_docraft have not yet leveraged data mining algorithms to analyze transactional data for optimizing sales. To avoid underperforming pajama models and determine which pajama models sell well, the utilization of the Apriori algorithm is necessary. The Apriori algorithm can discern these patterns based on transactional data. This study conducts a transactional data analysis using data mining with the Apriori algorithm. By employing this algorithm, the most frequently sold pajama products can be identified, allowing for prioritization of these models and the development of marketing strategies for other types of pajamas based on a comparison of their strengths and commonly high sales figures. The processed data yields associations rules for concurrently sold pajama items. Based on the results of the final association rules meeting both predetermined minimum support and confidence criteria, for instance, if a product with item code 7 (Cherrypie Nightdress) is purchased, then a product with item code 17 (3 in 1 Lotso Set) will likely be bought with a support value of 22.58% and a confidence value of 100%.
i_docraft上睡衣产品的销售还没有利用数据挖掘算法来分析交易数据以优化销售。为了避免表现不佳的睡衣模型,确定哪些睡衣模型卖得好,有必要使用Apriori算法。Apriori算法可以根据事务数据识别这些模式。本研究使用Apriori算法的数据挖掘进行事务性数据分析。通过使用这种算法,可以识别出最常销售的睡衣产品,允许对这些模型进行优先排序,并根据它们的优势和通常较高的销售数据的比较,为其他类型的睡衣制定营销策略。处理后的数据产生并发销售的睡衣商品的关联规则。根据最终关联规则的结果,同时满足预定的最小支持度和置信度标准,例如,如果购买商品代码为7的产品(Cherrypie Nightdress),则可能购买商品代码为17的产品(3 in 1 Lotso Set),其支持值为22.58%,置信度为100%。
{"title":"IMPLEMENTASI ALGORITMA APRIORI UNTUK MENENTUKAN PRODUK TERLARIS PADA TOKO I_DOCRAFT","authors":"Anton - Anton, Naufal Naufal","doi":"10.34010/komputa.v12i2.10904","DOIUrl":"https://doi.org/10.34010/komputa.v12i2.10904","url":null,"abstract":"The sales of pajama products on i_docraft have not yet leveraged data mining algorithms to analyze transactional data for optimizing sales. To avoid underperforming pajama models and determine which pajama models sell well, the utilization of the Apriori algorithm is necessary. The Apriori algorithm can discern these patterns based on transactional data. This study conducts a transactional data analysis using data mining with the Apriori algorithm. By employing this algorithm, the most frequently sold pajama products can be identified, allowing for prioritization of these models and the development of marketing strategies for other types of pajamas based on a comparison of their strengths and commonly high sales figures. The processed data yields associations rules for concurrently sold pajama items. Based on the results of the final association rules meeting both predetermined minimum support and confidence criteria, for instance, if a product with item code 7 (Cherrypie Nightdress) is purchased, then a product with item code 17 (3 in 1 Lotso Set) will likely be bought with a support value of 22.58% and a confidence value of 100%.","PeriodicalId":477061,"journal":{"name":"Komputa: Jurnal Ilmiah Komputer dan Informatika","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135197109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PERANCANGAN UI/UX APLIKASI “DENGERIN” BERBASIS MOBILE MENGGUNAKAN METODE DESIGN THINKING 基于移动的“倾听”应用程序UI/UX采用了一种设计思维方法
Pub Date : 2023-10-07 DOI: 10.34010/komputa.v12i2.10157
Nila Nazilatul Mazaya, Suliswaningsih Suliswaningsih
Changes in people's lifestyles are caused by the ease of use of technology, especially in the entertainment sector. In the field of entertainment, music is certainly no stranger to society, from children to parents. With digital advances and internet technology, music can be heard by millions of music lovers from all over the world. Music applications can increase interest and attract user attention to continue using them or diminish because they are bored using them. Problems that often occur when listening to music include not being user friendly, prices are quite expensive especially for students or students and also the services provided are less attractive. This study aims to find out how to increase user interest and keep it interesting using a music application. Therefore, the author tries to design a music application, namely the Dengerin Application. This design uses the Design Thinking method because it can produce creative solutions. In testing using a usability testing system with a score of 77,5. The result of this research is the design of mobile-based “Dengerin” application interface ehich was designed using figma.
人们生活方式的改变是由技术的易用性引起的,尤其是在娱乐领域。在娱乐领域,音乐对社会来说当然并不陌生,从孩子到父母。随着数字技术和互联网技术的进步,音乐可以被来自世界各地的数百万音乐爱好者听到。音乐应用程序可以增加用户的兴趣,吸引用户继续使用它们,或者因为使用它们感到无聊而减少用户的注意力。听音乐时经常出现的问题包括用户不友好,价格相当昂贵,特别是对学生或学生来说,所提供的服务也不那么有吸引力。本研究旨在找出如何提高用户对音乐应用程序的兴趣并保持其趣味性。因此,笔者尝试设计一个音乐应用程序,即Dengerin application。本设计采用设计思维方法,因为它可以产生创造性的解决方案。在测试中使用可用性测试系统,得分为77.5。本文的研究成果是基于figma设计的基于手机的“Dengerin”应用界面的设计。
{"title":"PERANCANGAN UI/UX APLIKASI “DENGERIN” BERBASIS MOBILE MENGGUNAKAN METODE DESIGN THINKING","authors":"Nila Nazilatul Mazaya, Suliswaningsih Suliswaningsih","doi":"10.34010/komputa.v12i2.10157","DOIUrl":"https://doi.org/10.34010/komputa.v12i2.10157","url":null,"abstract":"Changes in people's lifestyles are caused by the ease of use of technology, especially in the entertainment sector. In the field of entertainment, music is certainly no stranger to society, from children to parents. With digital advances and internet technology, music can be heard by millions of music lovers from all over the world. Music applications can increase interest and attract user attention to continue using them or diminish because they are bored using them. Problems that often occur when listening to music include not being user friendly, prices are quite expensive especially for students or students and also the services provided are less attractive. This study aims to find out how to increase user interest and keep it interesting using a music application. Therefore, the author tries to design a music application, namely the Dengerin Application. This design uses the Design Thinking method because it can produce creative solutions. In testing using a usability testing system with a score of 77,5. The result of this research is the design of mobile-based “Dengerin” application interface ehich was designed using figma.","PeriodicalId":477061,"journal":{"name":"Komputa: Jurnal Ilmiah Komputer dan Informatika","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135303015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementasi Teknologi Augmented Reality Pada Katalog Perumahan Sebagai Media Pemasaran Berbasis Android 将增强现实技术应用于房屋目录,作为基于安卓系统的营销媒体
Pub Date : 2023-10-05 DOI: 10.34010/komputa.v12i2.10884
Helmi Nurhidayat, Moh. Ali Romli
Salah satu teknologi yang menggabungkan objek tiga dimensi ke lingkungan nyata secara real time adalah Augmented Reality (AR). Salah satu sektor bisnis yang mengalami perkembangan pesat adalah bisnis perumahan. Untuk memudahkan pelanggan dalam melihat spesifikasi dan contoh perumahan, diperlukan visualisasi objek 3D dengan fitur rotasi, yang memungkinkan pengguna untuk melihat interior setiap ruangan, serta mengubah warna rumah sesuai keinginan. Penelitian ini bertujuan untuk menerapkan teknologi Augmented Reality untuk katalog penjualan rumah di Perumahan Griya Permata 2 Tanjungsari. Hasil pengujian menggunakan metode blackbox testing telah selesai dilakukan pada aplikasi dan menunjukkan bahwa aplikasi ini berjalan sesuai dengan fungsionalitas yang direncanakan. Namun, hasil Test intensitas cahaya, oklusi, dan jarak lacak menunjukkan bahwa proses pendeteksian memengaruhi hasil deteksi marker. Jarak maksimal pendeteksian adalah 100 cm, di mana pada jarak tersebut aplikasi akan mengalami kesulitan dalam melacak objek dan marker tidak dapat dideteksi hingga oklusi mencapai 75%. Penerapan teknologi Augmented Reality merupakan langkah yang tepat untuk meningkatkan efektivitas pemasaran dalam bisnis perumahan. Penggunaan teknologi Augmented Reality memberikan pengalaman interaktif dan realistis bagi calon pembeli, membantu memperluas jangkauan pemasaran, dan dapat meningkatkan daya tarik katalog perumahan. Kata kunci : Augmented Reality, Marker Based Tracking, Android, Media Pemasaran
将三维物体实时连接到现实环境的技术之一是增强现实。住房业务是其中一个增长迅速的商业部门。为了让客户更容易看到房屋规范和样本,需要一个具有旋转功能的3D物体可视化,让用户能够看到每个房间的内部,并根据需要改变房子的颜色。这项研究的目标是将增强现实技术应用于技术销售人员在檀木地产2宝石的销售目录中。使用黑盒测试方法的测试结果已完成,并表明该应用程序正在按计划运行。然而,光强度、光度和跟踪距离的测试表明,检测过程影响标记检测结果。最大检测距离为100厘米,在这段距离内,应用程序将很难跟踪对象,并标记将无法检测到75%。增强现实技术的应用是提高住房行业营销效率的正确步骤。增强现实技术为潜在买家提供互动和现实体验,帮助扩大营销范围,并增加住房目录的吸引力。关键词:增强现实,基于跟踪标记,Android,营销媒体
{"title":"Implementasi Teknologi Augmented Reality Pada Katalog Perumahan Sebagai Media Pemasaran Berbasis Android","authors":"Helmi Nurhidayat, Moh. Ali Romli","doi":"10.34010/komputa.v12i2.10884","DOIUrl":"https://doi.org/10.34010/komputa.v12i2.10884","url":null,"abstract":"Salah satu teknologi yang menggabungkan objek tiga dimensi ke lingkungan nyata secara real time adalah Augmented Reality (AR). Salah satu sektor bisnis yang mengalami perkembangan pesat adalah bisnis perumahan. Untuk memudahkan pelanggan dalam melihat spesifikasi dan contoh perumahan, diperlukan visualisasi objek 3D dengan fitur rotasi, yang memungkinkan pengguna untuk melihat interior setiap ruangan, serta mengubah warna rumah sesuai keinginan. Penelitian ini bertujuan untuk menerapkan teknologi Augmented Reality untuk katalog penjualan rumah di Perumahan Griya Permata 2 Tanjungsari. Hasil pengujian menggunakan metode blackbox testing telah selesai dilakukan pada aplikasi dan menunjukkan bahwa aplikasi ini berjalan sesuai dengan fungsionalitas yang direncanakan. Namun, hasil Test intensitas cahaya, oklusi, dan jarak lacak menunjukkan bahwa proses pendeteksian memengaruhi hasil deteksi marker. Jarak maksimal pendeteksian adalah 100 cm, di mana pada jarak tersebut aplikasi akan mengalami kesulitan dalam melacak objek dan marker tidak dapat dideteksi hingga oklusi mencapai 75%. Penerapan teknologi Augmented Reality merupakan langkah yang tepat untuk meningkatkan efektivitas pemasaran dalam bisnis perumahan. Penggunaan teknologi Augmented Reality memberikan pengalaman interaktif dan realistis bagi calon pembeli, membantu memperluas jangkauan pemasaran, dan dapat meningkatkan daya tarik katalog perumahan.
 Kata kunci : Augmented Reality, Marker Based Tracking, Android, Media Pemasaran","PeriodicalId":477061,"journal":{"name":"Komputa: Jurnal Ilmiah Komputer dan Informatika","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135547234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analisis Perbandingan Akurasi Metode Moving Average dan Metode Exponensial Smoothing dalam Memprediksi Kapasitas Produksi Padi Nasional 对“移动平均方法”和“预测国家水稻生产能力”的精确度比较
Pub Date : 2023-10-05 DOI: 10.34010/komputa.v12i2.10602
Mardiansyah Mardiansyah, Firman Amir
Pengelolaan persediaan padi merupakan aspek penting yang perlu ditingkatkan oleh para pemangku kepentingan guna mencapai keseimbangan antara persediaan dan konsumsi beras. Bullwhip Effect (BE) telah menjadi perhatian khusus dalam rantai pasokan selama pandemi, terutama dengan adanya komponen permintaan musiman dan nonmusiman. Peramalan kebutuhan produksi padi diperlukan untuk mengatasi masalah dalam pengolahan data dan situasi di lapangan. Perangkat lunak seperti Production and Operations Management (POM) dapat digunakan untuk peramalan menggunakan logika fuzzy. Dalam era Industri 4.0, sustainable smart manufacturing menjadi hal yang penting. Proyeksi kebutuhan produksi beras nasional dilakukan dengan menggunakan metode moving average dan metode exponential smoothing. Pengujian akurasi dilakukan dengan peramalan menggunakan metode moving average dan exponential smoothing dengan data produksi padi tahun 2010-2019, kemudian hasil peramalan tahun 2020 dari kedua metode tersebut akan dibandingkan dengan data real dan akan diketahui metode mana yang paling mendekati data real. Tujuan utama penelitian ini adalah untuk membandingkan dua metode yaitu metode moving average dan metode exponential smoothing yang digunakan pada perangkat lunak berbasis fuzzy. Hasil pengujian akurasi peramalan produksi beras dengan menggunakan metode moving average dan exponential smoothing yang telah dilakukan menunjukkan bahwa metode moving average lebih akurat dengan selisih 1,0089% dari data sebenarnya, sedangkan metode exponential smoothing memiliki selisih 12,0051% dari data sebenarnya.
大米供应管理是利益相关者在维持库存和大米消费之间平衡的一个重要方面。在大流行期间,特别是在季节性和非季节性需求成分的情况下,靶心效应一直是供应链中特别关注的问题。粮食生产的必要性是克服数据处理和现场情况问题所必需的。生产和操作管理等软件可以用模糊的逻辑进行预测。在工业4.0的时代,可持续的智能制造已成为一件大事。国家大米生产需求的预测是使用移动平均方法和出口平法实现的。测试准确率是通过将稻谷生产数据与2010年至2019年的移动平均和扩展稻谷数据进行比较,然后将2020年这两种方法的预测结果与真实数据进行比较,并将知道哪些方法最接近真实数据。本研究的主要目标是比较在基于模糊的软件中使用的两种移动平均方法和exponal平滑方法。通过使用移动平均方法和出口平衡法对大米生产的可比性检测结果表明,移动平均平衡法比实际数据差1,0089%,而扩展平衡法的间距为12.0051%。
{"title":"Analisis Perbandingan Akurasi Metode Moving Average dan Metode Exponensial Smoothing dalam Memprediksi Kapasitas Produksi Padi Nasional","authors":"Mardiansyah Mardiansyah, Firman Amir","doi":"10.34010/komputa.v12i2.10602","DOIUrl":"https://doi.org/10.34010/komputa.v12i2.10602","url":null,"abstract":"Pengelolaan persediaan padi merupakan aspek penting yang perlu ditingkatkan oleh para pemangku kepentingan guna mencapai keseimbangan antara persediaan dan konsumsi beras. Bullwhip Effect (BE) telah menjadi perhatian khusus dalam rantai pasokan selama pandemi, terutama dengan adanya komponen permintaan musiman dan nonmusiman. Peramalan kebutuhan produksi padi diperlukan untuk mengatasi masalah dalam pengolahan data dan situasi di lapangan. Perangkat lunak seperti Production and Operations Management (POM) dapat digunakan untuk peramalan menggunakan logika fuzzy. Dalam era Industri 4.0, sustainable smart manufacturing menjadi hal yang penting. Proyeksi kebutuhan produksi beras nasional dilakukan dengan menggunakan metode moving average dan metode exponential smoothing. Pengujian akurasi dilakukan dengan peramalan menggunakan metode moving average dan exponential smoothing dengan data produksi padi tahun 2010-2019, kemudian hasil peramalan tahun 2020 dari kedua metode tersebut akan dibandingkan dengan data real dan akan diketahui metode mana yang paling mendekati data real. Tujuan utama penelitian ini adalah untuk membandingkan dua metode yaitu metode moving average dan metode exponential smoothing yang digunakan pada perangkat lunak berbasis fuzzy. Hasil pengujian akurasi peramalan produksi beras dengan menggunakan metode moving average dan exponential smoothing yang telah dilakukan menunjukkan bahwa metode moving average lebih akurat dengan selisih 1,0089% dari data sebenarnya, sedangkan metode exponential smoothing memiliki selisih 12,0051% dari data sebenarnya.
","PeriodicalId":477061,"journal":{"name":"Komputa: Jurnal Ilmiah Komputer dan Informatika","volume":"170 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135547233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analisis Emosi pada Media Sosial Twitter Menggunakan Metode Multinomial Naive Bayes dan Synthetic Minority Oversampling Technique Emosi pagada媒体社交推特分析蒙古那坎方法多项式朴素贝叶斯与合成少数派过采样技术
Pub Date : 2023-09-30 DOI: 10.34010/komputa.v12i2.9454
Fritson Agung Julians Ayomi, Kania Evita Dewi
Twitter social media is often used to express one's emotions through tweets. Much research has been conducted on emotional analysis in the social media Twitter. Machine learning is a tool that is widely used to categorize emotions. However, an imbalance in the amount of data between classes is often a problem. So, this research aims to determine the performance of the combined Multinomial Naïve Bayes (MNB) and Synthetic Minority Oversampling Technique (SMOTE) methods for emotional analysis of tweets from the social media Twitter. Each tweet through data preprocessing in this research includes case folding, data cleaning, convert slangword, convert negation, tokenization, stopword removal, and stemming. For feature extraction the n-gram method is used and for feature weighting the term frequency method is used. Testing was carried out using K-Fold Cross Validation. Based on the test results, using SMOTE an average accuracy of 0.65 or 65% was obtained and an average f1-score value of 0.66 or 66%. Meanwhile, without SMOTE, an average accuracy of 0.64 or 64% was obtained and an average f1-score of 0.65 or 65%. Although in this study it can be shown that the results using SMOTE are 1% better in categorizing emotions. However, the results obtained are not optimal, and other methods of data balancing and machine learning still need to be studied.
推特社交媒体经常被用来通过推特来表达一个人的情绪。关于社交媒体Twitter上的情绪分析已经进行了很多研究。机器学习是一种广泛用于对情绪进行分类的工具。然而,类之间数据量的不平衡经常是一个问题。因此,本研究旨在确定组合多项式Naïve贝叶斯(MNB)和合成少数派过采样技术(SMOTE)方法对社交媒体Twitter推文进行情感分析的性能。本研究对每条推文进行数据预处理,包括案例折叠、数据清洗、俚语转换、否定转换、标记化、停止词去除和词干提取。特征提取采用n图法,特征加权采用词频法。采用K-Fold交叉验证进行检验。根据测试结果,使用SMOTE获得的平均准确率为0.65或65%,平均f1评分值为0.66或66%。未使用SMOTE时,平均准确率为0.64或64%,平均f1评分为0.65或65%。尽管在这项研究中,可以证明使用SMOTE的结果在分类情绪方面提高了1%。然而,得到的结果并不是最优的,其他的数据平衡和机器学习的方法仍然需要研究。
{"title":"Analisis Emosi pada Media Sosial Twitter Menggunakan Metode Multinomial Naive Bayes dan Synthetic Minority Oversampling Technique","authors":"Fritson Agung Julians Ayomi, Kania Evita Dewi","doi":"10.34010/komputa.v12i2.9454","DOIUrl":"https://doi.org/10.34010/komputa.v12i2.9454","url":null,"abstract":"Twitter social media is often used to express one's emotions through tweets. Much research has been conducted on emotional analysis in the social media Twitter. Machine learning is a tool that is widely used to categorize emotions. However, an imbalance in the amount of data between classes is often a problem. So, this research aims to determine the performance of the combined Multinomial Naïve Bayes (MNB) and Synthetic Minority Oversampling Technique (SMOTE) methods for emotional analysis of tweets from the social media Twitter. Each tweet through data preprocessing in this research includes case folding, data cleaning, convert slangword, convert negation, tokenization, stopword removal, and stemming. For feature extraction the n-gram method is used and for feature weighting the term frequency method is used. Testing was carried out using K-Fold Cross Validation. Based on the test results, using SMOTE an average accuracy of 0.65 or 65% was obtained and an average f1-score value of 0.66 or 66%. Meanwhile, without SMOTE, an average accuracy of 0.64 or 64% was obtained and an average f1-score of 0.65 or 65%. Although in this study it can be shown that the results using SMOTE are 1% better in categorizing emotions. However, the results obtained are not optimal, and other methods of data balancing and machine learning still need to be studied.","PeriodicalId":477061,"journal":{"name":"Komputa: Jurnal Ilmiah Komputer dan Informatika","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135126667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Komputa: Jurnal Ilmiah Komputer dan Informatika
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1