Eliane Cristina Gruszka Vendruscolo, Dany Mesa, Robson Fernando Missio
{"title":"接种巴西氮螺旋菌对腕毛虫土壤和根际微生物群的影响:两种氧梭菌类型的中试试验","authors":"Eliane Cristina Gruszka Vendruscolo, Dany Mesa, Robson Fernando Missio","doi":"10.1071/sr22201","DOIUrl":null,"url":null,"abstract":"Context The Brachiaria genus includes several species of pastures distributed in tropical and subtropical regions. Plant growth-promoting bacteria (PGPB), such as Azospirillum brasilense, have been used as inoculants to increase crop production. Aims This study explored the effect of A. brasilense on Brachiaria seedlings, rhizosphere, and soil. Methods We inoculated A. brasilense on Brachiaria seeds sown in two types of soil mainly varying in texture (medium texture-Mt and clayey-C soils). We then collected the rhizosphere to evaluate the microbiota adhered to the plants by high-throughput 16S sequencing using bioinformatic tools. Shoot and root biomass were also evaluated. Key results Inoculation increased the aerial biomass of Brachiaria plants. However, it did not increase root biomass. Soil texture is a critical element in shaping rhizosphere communities. A. brasilense decreased the abundance of Firmicutes, mainly in C Oxisols. Network analysis showed that Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the main phyla in the vicinity of Brachiaria roots. Furthermore, the abundance of specific phyla, such as Armatimonadetes, Tenericutes, and Fusobacteria (Mt) and Latescibacteria, Rokubacteria, and WS2 (C) increased in the bulk fraction. In the rhizosphere, Chlamydiae was exclusively related to Mt Oxisols. By contrast, Verrumicrobia and Fusobacteria were only found in the C soils. Conclusions Relative abundance of Acidobacteria and Actinobacteria increased after inoculation in the rhizosphere of both types of Oxisols. Implications These results indicate that inoculation can affect Brachiaria plants and their rhizospheric bacterial communities. The effect of taxonomic groups altered through inoculation and the relationship between the functional capacities of each group within the microbiota are yet to be elucidated.","PeriodicalId":21818,"journal":{"name":"Soil Research","volume":"6 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect in soil and rhizosphere microbiota of Brachiaria inoculated with Azospirillum brasilense: a pilot trial in two Oxisol types\",\"authors\":\"Eliane Cristina Gruszka Vendruscolo, Dany Mesa, Robson Fernando Missio\",\"doi\":\"10.1071/sr22201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context The Brachiaria genus includes several species of pastures distributed in tropical and subtropical regions. Plant growth-promoting bacteria (PGPB), such as Azospirillum brasilense, have been used as inoculants to increase crop production. Aims This study explored the effect of A. brasilense on Brachiaria seedlings, rhizosphere, and soil. Methods We inoculated A. brasilense on Brachiaria seeds sown in two types of soil mainly varying in texture (medium texture-Mt and clayey-C soils). We then collected the rhizosphere to evaluate the microbiota adhered to the plants by high-throughput 16S sequencing using bioinformatic tools. Shoot and root biomass were also evaluated. Key results Inoculation increased the aerial biomass of Brachiaria plants. However, it did not increase root biomass. Soil texture is a critical element in shaping rhizosphere communities. A. brasilense decreased the abundance of Firmicutes, mainly in C Oxisols. Network analysis showed that Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the main phyla in the vicinity of Brachiaria roots. Furthermore, the abundance of specific phyla, such as Armatimonadetes, Tenericutes, and Fusobacteria (Mt) and Latescibacteria, Rokubacteria, and WS2 (C) increased in the bulk fraction. In the rhizosphere, Chlamydiae was exclusively related to Mt Oxisols. By contrast, Verrumicrobia and Fusobacteria were only found in the C soils. Conclusions Relative abundance of Acidobacteria and Actinobacteria increased after inoculation in the rhizosphere of both types of Oxisols. Implications These results indicate that inoculation can affect Brachiaria plants and their rhizospheric bacterial communities. The effect of taxonomic groups altered through inoculation and the relationship between the functional capacities of each group within the microbiota are yet to be elucidated.\",\"PeriodicalId\":21818,\"journal\":{\"name\":\"Soil Research\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/sr22201\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/sr22201","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Effect in soil and rhizosphere microbiota of Brachiaria inoculated with Azospirillum brasilense: a pilot trial in two Oxisol types
Context The Brachiaria genus includes several species of pastures distributed in tropical and subtropical regions. Plant growth-promoting bacteria (PGPB), such as Azospirillum brasilense, have been used as inoculants to increase crop production. Aims This study explored the effect of A. brasilense on Brachiaria seedlings, rhizosphere, and soil. Methods We inoculated A. brasilense on Brachiaria seeds sown in two types of soil mainly varying in texture (medium texture-Mt and clayey-C soils). We then collected the rhizosphere to evaluate the microbiota adhered to the plants by high-throughput 16S sequencing using bioinformatic tools. Shoot and root biomass were also evaluated. Key results Inoculation increased the aerial biomass of Brachiaria plants. However, it did not increase root biomass. Soil texture is a critical element in shaping rhizosphere communities. A. brasilense decreased the abundance of Firmicutes, mainly in C Oxisols. Network analysis showed that Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the main phyla in the vicinity of Brachiaria roots. Furthermore, the abundance of specific phyla, such as Armatimonadetes, Tenericutes, and Fusobacteria (Mt) and Latescibacteria, Rokubacteria, and WS2 (C) increased in the bulk fraction. In the rhizosphere, Chlamydiae was exclusively related to Mt Oxisols. By contrast, Verrumicrobia and Fusobacteria were only found in the C soils. Conclusions Relative abundance of Acidobacteria and Actinobacteria increased after inoculation in the rhizosphere of both types of Oxisols. Implications These results indicate that inoculation can affect Brachiaria plants and their rhizospheric bacterial communities. The effect of taxonomic groups altered through inoculation and the relationship between the functional capacities of each group within the microbiota are yet to be elucidated.
期刊介绍:
Soil Research (formerly known as Australian Journal of Soil Research) is an international journal that aims to rapidly publish high-quality, novel research about fundamental and applied aspects of soil science. As well as publishing in traditional aspects of soil biology, soil physics and soil chemistry across terrestrial ecosystems, the journal welcomes manuscripts dealing with wider interactions of soils with the environment.
Soil Research is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.