{"title":"基于改进遗传算法的供应链网络规划优化问题","authors":"Liang Zhao, Jing Xie","doi":"10.1051/smdo/2023014","DOIUrl":null,"url":null,"abstract":"The planning problem of supply chain network is highly related to logistics cost and product quality. In this paper, for the optimization of supply chain network planning problem, an agricultural product supply chain network under the direct docking model between farmers and supermarkets was taken as an example to establish an agricultural product supply chain network planning model with the lowest cost as the objective. Then, an improved genetic algorithm (GA) was designed to solve the model. The analysis of the arithmetic example showed that compared with the traditional GA, the total cost obtained by the improved GA was lower, at 39,004.48 $, which was 6.5% less than that of the traditional GA; the solution result of the improved GA was also superior to that of other heuristic algorithms, such as particle swarm optimization and ant colony optimization. The experimental results demonstrate the optimization effectiveness of the improved GA for the supply chain network planning problem, and it can be applied in practice.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the supply chain network planning problem using an improved genetic algorithm\",\"authors\":\"Liang Zhao, Jing Xie\",\"doi\":\"10.1051/smdo/2023014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The planning problem of supply chain network is highly related to logistics cost and product quality. In this paper, for the optimization of supply chain network planning problem, an agricultural product supply chain network under the direct docking model between farmers and supermarkets was taken as an example to establish an agricultural product supply chain network planning model with the lowest cost as the objective. Then, an improved genetic algorithm (GA) was designed to solve the model. The analysis of the arithmetic example showed that compared with the traditional GA, the total cost obtained by the improved GA was lower, at 39,004.48 $, which was 6.5% less than that of the traditional GA; the solution result of the improved GA was also superior to that of other heuristic algorithms, such as particle swarm optimization and ant colony optimization. The experimental results demonstrate the optimization effectiveness of the improved GA for the supply chain network planning problem, and it can be applied in practice.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2023014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2023014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Optimization of the supply chain network planning problem using an improved genetic algorithm
The planning problem of supply chain network is highly related to logistics cost and product quality. In this paper, for the optimization of supply chain network planning problem, an agricultural product supply chain network under the direct docking model between farmers and supermarkets was taken as an example to establish an agricultural product supply chain network planning model with the lowest cost as the objective. Then, an improved genetic algorithm (GA) was designed to solve the model. The analysis of the arithmetic example showed that compared with the traditional GA, the total cost obtained by the improved GA was lower, at 39,004.48 $, which was 6.5% less than that of the traditional GA; the solution result of the improved GA was also superior to that of other heuristic algorithms, such as particle swarm optimization and ant colony optimization. The experimental results demonstrate the optimization effectiveness of the improved GA for the supply chain network planning problem, and it can be applied in practice.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).