Haider M. Owaid, Abeer M. Humad, Majid Al-Gburi, Zainab Abdul Sattar Ghali, Gabrial Sas
{"title":"纳米颗粒与废材料在水泥砂浆中的应用","authors":"Haider M. Owaid, Abeer M. Humad, Majid Al-Gburi, Zainab Abdul Sattar Ghali, Gabrial Sas","doi":"10.1515/jmbm-2022-0289","DOIUrl":null,"url":null,"abstract":"Abstract Cement has shaped the modern built environment, but its production generates substantial carbon dioxide emissions. Consequently, there is an urgent need to identify alternative cementitious building materials for sustainable construction. In this study, cement mortars (CMs) were produced by partially replacing cement with nanoclay (NC) and granite dust (GD). The replacement proportions (% by weight of cement) of these materials were 1.5, 3, and 4.5% for NC and 10, 20, and 30% for GD. For mortars containing NC but not GD, the strength was maximized when the NC replacement proportion was 3%. To evaluate the combined effect of partially replacing cement with both NC and GD on the fresh and hardening properties of cement-blended mortars, ternary binder mixtures containing 3% NC together with 10, 20, or 30% GD were prepared, and their workability, bulk density, compressive strength (at 7, 28, and 90 days), and flexural strength were measured. Increasing the content of NC and/or GD reduced the flowability of these mortars relative to that of the reference mortar mix because it increased the content of fine materials. CM containing 3% NC and 10% GD had the highest compressive strength at 7, 28, and 90 days while also having the greatest flexural strength when compared to the control mix. This is most likely due to the high silica and alumina content of NC and GD, as well as their high specific surface area, which would improve the maturity and density of the matrix when compared to cement alone.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of nanoparticles and waste materials in cement mortars\",\"authors\":\"Haider M. Owaid, Abeer M. Humad, Majid Al-Gburi, Zainab Abdul Sattar Ghali, Gabrial Sas\",\"doi\":\"10.1515/jmbm-2022-0289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cement has shaped the modern built environment, but its production generates substantial carbon dioxide emissions. Consequently, there is an urgent need to identify alternative cementitious building materials for sustainable construction. In this study, cement mortars (CMs) were produced by partially replacing cement with nanoclay (NC) and granite dust (GD). The replacement proportions (% by weight of cement) of these materials were 1.5, 3, and 4.5% for NC and 10, 20, and 30% for GD. For mortars containing NC but not GD, the strength was maximized when the NC replacement proportion was 3%. To evaluate the combined effect of partially replacing cement with both NC and GD on the fresh and hardening properties of cement-blended mortars, ternary binder mixtures containing 3% NC together with 10, 20, or 30% GD were prepared, and their workability, bulk density, compressive strength (at 7, 28, and 90 days), and flexural strength were measured. Increasing the content of NC and/or GD reduced the flowability of these mortars relative to that of the reference mortar mix because it increased the content of fine materials. CM containing 3% NC and 10% GD had the highest compressive strength at 7, 28, and 90 days while also having the greatest flexural strength when compared to the control mix. This is most likely due to the high silica and alumina content of NC and GD, as well as their high specific surface area, which would improve the maturity and density of the matrix when compared to cement alone.\",\"PeriodicalId\":17354,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmbm-2022-0289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Utilization of nanoparticles and waste materials in cement mortars
Abstract Cement has shaped the modern built environment, but its production generates substantial carbon dioxide emissions. Consequently, there is an urgent need to identify alternative cementitious building materials for sustainable construction. In this study, cement mortars (CMs) were produced by partially replacing cement with nanoclay (NC) and granite dust (GD). The replacement proportions (% by weight of cement) of these materials were 1.5, 3, and 4.5% for NC and 10, 20, and 30% for GD. For mortars containing NC but not GD, the strength was maximized when the NC replacement proportion was 3%. To evaluate the combined effect of partially replacing cement with both NC and GD on the fresh and hardening properties of cement-blended mortars, ternary binder mixtures containing 3% NC together with 10, 20, or 30% GD were prepared, and their workability, bulk density, compressive strength (at 7, 28, and 90 days), and flexural strength were measured. Increasing the content of NC and/or GD reduced the flowability of these mortars relative to that of the reference mortar mix because it increased the content of fine materials. CM containing 3% NC and 10% GD had the highest compressive strength at 7, 28, and 90 days while also having the greatest flexural strength when compared to the control mix. This is most likely due to the high silica and alumina content of NC and GD, as well as their high specific surface area, which would improve the maturity and density of the matrix when compared to cement alone.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.