振子网络中簇同步的振动镇定性

Yuzhen Qin;Alberto Maria Nobili;Danielle S. Bassett;Fabio Pasqualetti
{"title":"振子网络中簇同步的振动镇定性","authors":"Yuzhen Qin;Alberto Maria Nobili;Danielle S. Bassett;Fabio Pasqualetti","doi":"10.1109/OJCSYS.2023.3331195","DOIUrl":null,"url":null,"abstract":"Cluster synchronization is of great importance for the normal functioning of numerous technological and natural systems. Deviations from normal cluster synchronization patterns are closely associated with various malfunctions, such as neurological disorders in the brain. Therefore, it is crucial to restore normal system functions by stabilizing the appropriate cluster synchronization patterns. Most existing studies focus on designing controllers based on state measurements to achieve system stabilization. However, in many real-world scenarios, measuring system states in real time, such as neuronal activity in the brain, poses significant challenges, rendering the stabilization of such systems difficult. To overcome this challenge, in this article, we employ an open-loop control strategy, \n<italic>vibrational control</i>\n, which does not require any state measurements. We establish some sufficient conditions under which vibrational inputs stabilize cluster synchronization. Further, we provide a tractable approach to design vibrational control. Finally, numerical experiments are conducted to demonstrate our theoretical findings.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"2 ","pages":"439-453"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10313029","citationCount":"0","resultStr":"{\"title\":\"Vibrational Stabilization of Cluster Synchronization in Oscillator Networks\",\"authors\":\"Yuzhen Qin;Alberto Maria Nobili;Danielle S. Bassett;Fabio Pasqualetti\",\"doi\":\"10.1109/OJCSYS.2023.3331195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster synchronization is of great importance for the normal functioning of numerous technological and natural systems. Deviations from normal cluster synchronization patterns are closely associated with various malfunctions, such as neurological disorders in the brain. Therefore, it is crucial to restore normal system functions by stabilizing the appropriate cluster synchronization patterns. Most existing studies focus on designing controllers based on state measurements to achieve system stabilization. However, in many real-world scenarios, measuring system states in real time, such as neuronal activity in the brain, poses significant challenges, rendering the stabilization of such systems difficult. To overcome this challenge, in this article, we employ an open-loop control strategy, \\n<italic>vibrational control</i>\\n, which does not require any state measurements. We establish some sufficient conditions under which vibrational inputs stabilize cluster synchronization. Further, we provide a tractable approach to design vibrational control. Finally, numerical experiments are conducted to demonstrate our theoretical findings.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"2 \",\"pages\":\"439-453\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10313029\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10313029/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10313029/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

集群同步对于众多技术系统和自然系统的正常运行具有重要意义。偏离正常的集群同步模式与各种功能障碍密切相关,例如大脑中的神经系统疾病。因此,通过稳定适当的集群同步模式来恢复正常的系统功能至关重要。现有的研究大多集中在设计基于状态测量的控制器来实现系统的稳定。然而,在许多现实场景中,实时测量系统状态(如大脑中的神经元活动)带来了重大挑战,使此类系统难以稳定。为了克服这一挑战,在本文中,我们采用了一种开环控制策略,即振动控制,它不需要任何状态测量。建立了振动输入稳定集群同步的充分条件。此外,我们提供了一种易于处理的方法来设计振动控制。最后,通过数值实验对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vibrational Stabilization of Cluster Synchronization in Oscillator Networks
Cluster synchronization is of great importance for the normal functioning of numerous technological and natural systems. Deviations from normal cluster synchronization patterns are closely associated with various malfunctions, such as neurological disorders in the brain. Therefore, it is crucial to restore normal system functions by stabilizing the appropriate cluster synchronization patterns. Most existing studies focus on designing controllers based on state measurements to achieve system stabilization. However, in many real-world scenarios, measuring system states in real time, such as neuronal activity in the brain, poses significant challenges, rendering the stabilization of such systems difficult. To overcome this challenge, in this article, we employ an open-loop control strategy, vibrational control , which does not require any state measurements. We establish some sufficient conditions under which vibrational inputs stabilize cluster synchronization. Further, we provide a tractable approach to design vibrational control. Finally, numerical experiments are conducted to demonstrate our theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Control of Endemic Epidemic Diseases With Behavioral Response Resilient Multi-Agent Systems Against Denial of Service Attacks via Adaptive and Activatable Network Layers Resiliency Through Collaboration in Heterogeneous Multi-Robot Systems Resilient Synchronization of Pulse-Coupled Oscillators Under Stealthy Attacks Pareto-Optimal Event-Based Scheme for Station and Inter-Station Control of Electric and Automated Buses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1