W-Al-Si-C合金材料铣削过程加工性能优化分析

IF 2.4 Q2 ENGINEERING, MULTIDISCIPLINARY Innovation and Emerging Technologies Pub Date : 2023-01-01 DOI:10.1142/s2737599423400066
Manoj Kumar, Ankit D. Oza, Kiran S. Bhole, Manoj Kumar, Manish Gupta, Sumit Das Lala
{"title":"W-Al-Si-C合金材料铣削过程加工性能优化分析","authors":"Manoj Kumar, Ankit D. Oza, Kiran S. Bhole, Manoj Kumar, Manish Gupta, Sumit Das Lala","doi":"10.1142/s2737599423400066","DOIUrl":null,"url":null,"abstract":"This study determined the optimum HSS cutting tool technique parameters for milling W-Al-Si-C rods using Taguchi methodology. This paper explains the empirical results of the selection of appropriate cutting settings that assure lower power consumption in high-end Computer Numerical Control (CNC) machines. An experiment employing the Taguchi methodology on an extruded W-Al- Si-C rod was performed on a CNC lathe with cutting speed, feed rate, and depth of cut as the process parameters. The performance characteristics (energy usage) were quantified by a data collection system. Minor energy process parameters were selected after data analysis. Experimental results are presented to demonstrate the worth of the chosen methodology. A total of 350[Formula: see text]rpm, 0.37[Formula: see text]mm/rev feed rate, and 1[Formula: see text]mm of cut depth produced the best MRR result. The maximum material removal rate (MRR) is obtained at lower levels of spindle speed and depth of cut, i.e., 1.452[Formula: see text]g/sec.","PeriodicalId":29682,"journal":{"name":"Innovation and Emerging Technologies","volume":"4 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and analysis of machining performance for the milling process during milling of W-Al-Si-C alloy material\",\"authors\":\"Manoj Kumar, Ankit D. Oza, Kiran S. Bhole, Manoj Kumar, Manish Gupta, Sumit Das Lala\",\"doi\":\"10.1142/s2737599423400066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study determined the optimum HSS cutting tool technique parameters for milling W-Al-Si-C rods using Taguchi methodology. This paper explains the empirical results of the selection of appropriate cutting settings that assure lower power consumption in high-end Computer Numerical Control (CNC) machines. An experiment employing the Taguchi methodology on an extruded W-Al- Si-C rod was performed on a CNC lathe with cutting speed, feed rate, and depth of cut as the process parameters. The performance characteristics (energy usage) were quantified by a data collection system. Minor energy process parameters were selected after data analysis. Experimental results are presented to demonstrate the worth of the chosen methodology. A total of 350[Formula: see text]rpm, 0.37[Formula: see text]mm/rev feed rate, and 1[Formula: see text]mm of cut depth produced the best MRR result. The maximum material removal rate (MRR) is obtained at lower levels of spindle speed and depth of cut, i.e., 1.452[Formula: see text]g/sec.\",\"PeriodicalId\":29682,\"journal\":{\"name\":\"Innovation and Emerging Technologies\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovation and Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2737599423400066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovation and Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2737599423400066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用田口方法确定了铣削W-Al-Si-C棒的最佳高速钢刀具技术参数。本文解释了在高端计算机数控(CNC)机床中选择适当的切削设置以确保较低功耗的实证结果。在数控车床上以切削速度、进给速度和切削深度为工艺参数,采用田口方法对挤压W-Al- Si-C棒材进行了实验。性能特征(能源使用)通过数据收集系统进行量化。通过数据分析,选择了次要的能量工艺参数。实验结果证明了所选方法的价值。共350[公式:见文]rpm, 0.37[公式:见文]mm/rev进给速率,1[公式:见文]mm的切割深度产生最佳MRR结果。在较低的主轴转速和切削深度水平下,材料去除率(MRR)最大,即1.452 g/sec[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization and analysis of machining performance for the milling process during milling of W-Al-Si-C alloy material
This study determined the optimum HSS cutting tool technique parameters for milling W-Al-Si-C rods using Taguchi methodology. This paper explains the empirical results of the selection of appropriate cutting settings that assure lower power consumption in high-end Computer Numerical Control (CNC) machines. An experiment employing the Taguchi methodology on an extruded W-Al- Si-C rod was performed on a CNC lathe with cutting speed, feed rate, and depth of cut as the process parameters. The performance characteristics (energy usage) were quantified by a data collection system. Minor energy process parameters were selected after data analysis. Experimental results are presented to demonstrate the worth of the chosen methodology. A total of 350[Formula: see text]rpm, 0.37[Formula: see text]mm/rev feed rate, and 1[Formula: see text]mm of cut depth produced the best MRR result. The maximum material removal rate (MRR) is obtained at lower levels of spindle speed and depth of cut, i.e., 1.452[Formula: see text]g/sec.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using automation and machine learning to maximize tool use in turning centers for better surface finish Industrial and market opportunities in hybrid additive manufacturing Placenta-on-a-chip: Response of neural cells to pharmaceutical agents transported across the placental barrier An overview of image processing for dental diagnosis Predicting compressive strength of geopolymer concrete using machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1