首页 > 最新文献

Innovation and Emerging Technologies最新文献

英文 中文
Placenta-on-a-chip: Response of neural cells to pharmaceutical agents transported across the placental barrier 胎盘芯片:神经细胞对通过胎盘屏障运输的药物的反应
Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1142/s2737599423400042
Rajeendra L. Pemathilaka, Nicole N. Hashemi
Striving for sustainable drug discovery, we have presented a proof-of-concept for studying the effects of pharmaceutical agents transported across the placental barrier on neural cells. The potential effects of pharmaceutical agents on fetus have made concerns about their use and require more studies to address these concerns. A placenta-on-a-chip model was fabricated and tested for transport of naltrexone (NTX) and its primary metabolite 6[Formula: see text]-naltrexol. The NTX/6[Formula: see text]-naltrexol transported from the maternal channel to the fetal channel was then collected from the fetal channel. To evaluate the behavior of neural cells following exposure to NTX and 6[Formula: see text]-naltrexol, perfusate from the fetal channel was directed toward the cultured N27 neural cells. Neural cells exposed to the transported NTX/6[Formula: see text]-naltrexol were then evaluated for gene expression and cell viability. Results showed significantly higher fold changes in IL-6 and TNF-[Formula: see text] expression when exposed to NTX/6[Formula: see text]-naltrexol. However, a lower fold change in IL-1[Formula: see text] expression was observed, while it remained the same in sphingosine kinase (sphk)1. Also, cell viability with NTX/6[Formula: see text]-naltrexol exposure was determined to be significantly lower ([Formula: see text]). This study has the potential to reveal the impact of pharmaceutical agents on the developing neural system of fetuses and their premature brains.
为了可持续的药物发现,我们提出了一个概念验证,用于研究药物通过胎盘屏障运输对神经细胞的影响。药物制剂对胎儿的潜在影响引起了人们的关注,需要更多的研究来解决这些问题。制作胎盘芯片模型并检测纳曲酮(NTX)及其主要代谢物6 -纳曲醇的转运。NTX/6[公式:见文]-纳曲醇从母体通道转运到胎儿通道,然后从胎儿通道收集。为了评估神经细胞暴露于NTX和6 -纳曲醇后的行为,将胎儿通道的灌注液导向培养的N27神经细胞。神经细胞暴露于运输的NTX/6[公式:见文本]-纳曲醇,然后评估基因表达和细胞活力。结果显示,暴露于NTX/6[公式:见文本]-纳曲醇时,IL-6和TNF-表达的倍数变化显著升高。然而,IL-1[公式:见文]的表达变化较低,而鞘氨酸激酶(sphk)1的表达保持不变。此外,NTX/6[公式:见文本]-纳曲醇暴露的细胞活力被确定为显着降低([公式:见文本])。这项研究有可能揭示药物对胎儿发育中的神经系统和早产儿大脑的影响。
{"title":"Placenta-on-a-chip: Response of neural cells to pharmaceutical agents transported across the placental barrier","authors":"Rajeendra L. Pemathilaka, Nicole N. Hashemi","doi":"10.1142/s2737599423400042","DOIUrl":"https://doi.org/10.1142/s2737599423400042","url":null,"abstract":"Striving for sustainable drug discovery, we have presented a proof-of-concept for studying the effects of pharmaceutical agents transported across the placental barrier on neural cells. The potential effects of pharmaceutical agents on fetus have made concerns about their use and require more studies to address these concerns. A placenta-on-a-chip model was fabricated and tested for transport of naltrexone (NTX) and its primary metabolite 6[Formula: see text]-naltrexol. The NTX/6[Formula: see text]-naltrexol transported from the maternal channel to the fetal channel was then collected from the fetal channel. To evaluate the behavior of neural cells following exposure to NTX and 6[Formula: see text]-naltrexol, perfusate from the fetal channel was directed toward the cultured N27 neural cells. Neural cells exposed to the transported NTX/6[Formula: see text]-naltrexol were then evaluated for gene expression and cell viability. Results showed significantly higher fold changes in IL-6 and TNF-[Formula: see text] expression when exposed to NTX/6[Formula: see text]-naltrexol. However, a lower fold change in IL-1[Formula: see text] expression was observed, while it remained the same in sphingosine kinase (sphk)1. Also, cell viability with NTX/6[Formula: see text]-naltrexol exposure was determined to be significantly lower ([Formula: see text]). This study has the potential to reveal the impact of pharmaceutical agents on the developing neural system of fetuses and their premature brains.","PeriodicalId":29682,"journal":{"name":"Innovation and Emerging Technologies","volume":"179 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77062645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lifting scheme-based wavelet transform method for improved genomic classification and sequence analysis of Coronavirus 基于提升方案的小波变换改进冠状病毒基因组分类与序列分析
Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1142/s2737599423500020
Subhajit Kar, Madhabi Ganguly, Supratik Sen
The paper proposes a lifting scheme-based wavelet transform clustering method as a better alternative to traditional alignment-based virus genome classification and grouping techniques. The efficiency of the proposed alignment-free algorithm have been tested using Coronavirus datasets obtained from NCBI database, against established results from proven techniques. In the proposed approach, the nucleotide sequences are converted into numerical ones leveraging purine–pyrimidine mapping and a DNA walk is calculated to visually interpret them. Second-generation wavelet transform employing Cohen–Daubechies–Feauveau wavelet is applied to the numerical sequences of Coronavirus to determine the approximate coefficients. Approximate coefficients are used to cluster Coronavirus sequences using UPGMA phylogenetic tree for three different datasets of Coronaviruses comprising Coronavirus groups, Human Coronaviruses (HCoVs) and [Formula: see text]–[Formula: see text]–[Formula: see text]–[Formula: see text] Coronavirus genre. The proposed algorithm has successfully classified all the datasets with more than 97% of average accuracy compared in terms of complexity and accuracy against FFT, first-generation DWT, MEGA, and CLUSTAL-W. The obtained accuracy for Corona group is 100%, HCoV dataset is 100%, and for [Formula: see text]–[Formula: see text]–[Formula: see text]–[Formula: see text] CoV is 92%. The runtimes of the algorithm are 0.70, 1.22, and 0.63 sec for the respective Coronavirus datasets.
本文提出了一种基于提升方案的小波变换聚类方法,作为传统基于比对的病毒基因组分类和分组技术的更好替代方法。使用从NCBI数据库获得的冠状病毒数据集,对所提出的无比对算法的效率进行了测试,并与经过验证的技术的既定结果进行了对比。在提出的方法中,利用嘌呤-嘧啶映射将核苷酸序列转换为数字序列,并计算DNA漫步以直观地解释它们。采用Cohen-Daubechies-Feauveau小波对冠状病毒数值序列进行第二代小波变换,确定近似系数。利用UPGMA系统发育树对冠状病毒的三个不同数据集(包括冠状病毒群、人类冠状病毒(HCoVs)和[公式:见文本]-[公式:见文本]-[公式:见文本]-[公式:见文本]冠状病毒类型)的冠状病毒序列进行近似系数聚类。与FFT、第一代DWT、MEGA和CLUSTAL-W相比,该算法在复杂度和准确率方面成功地对所有数据集进行了分类,平均准确率超过97%。Corona组的准确率为100%,HCoV数据集的准确率为100%,[公式:见文]-[公式:见文]-[公式:见文]-[公式:见文]-[公式:见文]的CoV准确率为92%。对于冠状病毒数据集,该算法的运行时间分别为0.70、1.22和0.63秒。
{"title":"Lifting scheme-based wavelet transform method for improved genomic classification and sequence analysis of Coronavirus","authors":"Subhajit Kar, Madhabi Ganguly, Supratik Sen","doi":"10.1142/s2737599423500020","DOIUrl":"https://doi.org/10.1142/s2737599423500020","url":null,"abstract":"The paper proposes a lifting scheme-based wavelet transform clustering method as a better alternative to traditional alignment-based virus genome classification and grouping techniques. The efficiency of the proposed alignment-free algorithm have been tested using Coronavirus datasets obtained from NCBI database, against established results from proven techniques. In the proposed approach, the nucleotide sequences are converted into numerical ones leveraging purine–pyrimidine mapping and a DNA walk is calculated to visually interpret them. Second-generation wavelet transform employing Cohen–Daubechies–Feauveau wavelet is applied to the numerical sequences of Coronavirus to determine the approximate coefficients. Approximate coefficients are used to cluster Coronavirus sequences using UPGMA phylogenetic tree for three different datasets of Coronaviruses comprising Coronavirus groups, Human Coronaviruses (HCoVs) and [Formula: see text]–[Formula: see text]–[Formula: see text]–[Formula: see text] Coronavirus genre. The proposed algorithm has successfully classified all the datasets with more than 97% of average accuracy compared in terms of complexity and accuracy against FFT, first-generation DWT, MEGA, and CLUSTAL-W. The obtained accuracy for Corona group is 100%, HCoV dataset is 100%, and for [Formula: see text]–[Formula: see text]–[Formula: see text]–[Formula: see text] CoV is 92%. The runtimes of the algorithm are 0.70, 1.22, and 0.63 sec for the respective Coronavirus datasets.","PeriodicalId":29682,"journal":{"name":"Innovation and Emerging Technologies","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89821881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization and analysis of machining performance for the milling process during milling of W-Al-Si-C alloy material W-Al-Si-C合金材料铣削过程加工性能优化分析
Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1142/s2737599423400066
Manoj Kumar, Ankit D. Oza, Kiran S. Bhole, Manoj Kumar, Manish Gupta, Sumit Das Lala
This study determined the optimum HSS cutting tool technique parameters for milling W-Al-Si-C rods using Taguchi methodology. This paper explains the empirical results of the selection of appropriate cutting settings that assure lower power consumption in high-end Computer Numerical Control (CNC) machines. An experiment employing the Taguchi methodology on an extruded W-Al- Si-C rod was performed on a CNC lathe with cutting speed, feed rate, and depth of cut as the process parameters. The performance characteristics (energy usage) were quantified by a data collection system. Minor energy process parameters were selected after data analysis. Experimental results are presented to demonstrate the worth of the chosen methodology. A total of 350[Formula: see text]rpm, 0.37[Formula: see text]mm/rev feed rate, and 1[Formula: see text]mm of cut depth produced the best MRR result. The maximum material removal rate (MRR) is obtained at lower levels of spindle speed and depth of cut, i.e., 1.452[Formula: see text]g/sec.
本研究采用田口方法确定了铣削W-Al-Si-C棒的最佳高速钢刀具技术参数。本文解释了在高端计算机数控(CNC)机床中选择适当的切削设置以确保较低功耗的实证结果。在数控车床上以切削速度、进给速度和切削深度为工艺参数,采用田口方法对挤压W-Al- Si-C棒材进行了实验。性能特征(能源使用)通过数据收集系统进行量化。通过数据分析,选择了次要的能量工艺参数。实验结果证明了所选方法的价值。共350[公式:见文]rpm, 0.37[公式:见文]mm/rev进给速率,1[公式:见文]mm的切割深度产生最佳MRR结果。在较低的主轴转速和切削深度水平下,材料去除率(MRR)最大,即1.452 g/sec[公式:见文]。
{"title":"Optimization and analysis of machining performance for the milling process during milling of W-Al-Si-C alloy material","authors":"Manoj Kumar, Ankit D. Oza, Kiran S. Bhole, Manoj Kumar, Manish Gupta, Sumit Das Lala","doi":"10.1142/s2737599423400066","DOIUrl":"https://doi.org/10.1142/s2737599423400066","url":null,"abstract":"This study determined the optimum HSS cutting tool technique parameters for milling W-Al-Si-C rods using Taguchi methodology. This paper explains the empirical results of the selection of appropriate cutting settings that assure lower power consumption in high-end Computer Numerical Control (CNC) machines. An experiment employing the Taguchi methodology on an extruded W-Al- Si-C rod was performed on a CNC lathe with cutting speed, feed rate, and depth of cut as the process parameters. The performance characteristics (energy usage) were quantified by a data collection system. Minor energy process parameters were selected after data analysis. Experimental results are presented to demonstrate the worth of the chosen methodology. A total of 350[Formula: see text]rpm, 0.37[Formula: see text]mm/rev feed rate, and 1[Formula: see text]mm of cut depth produced the best MRR result. The maximum material removal rate (MRR) is obtained at lower levels of spindle speed and depth of cut, i.e., 1.452[Formula: see text]g/sec.","PeriodicalId":29682,"journal":{"name":"Innovation and Emerging Technologies","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135560616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent trends and research opportunities in hybrid additive manufacturing 混合增材制造的最新趋势和研究机会
Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1142/s2737599423400017
Soni Kumari, Rakesh Gupta, Gopal Krishna, K. Abhishek, Naveenkrishna Alla, K. K. Saxena
Over the past few decades, manufacturing and production have undergone rapid development, particularly through the combination of additive manufacturing (AM) and other digitally driven manufacturing machines, creating hybrid additive manufacturing (hybrid-AM). However, despite significant growth, hybrid-AM has not yet gained acceptance at an industrial level due to certain limitations. This article aims to provide the latest information and discuss recent research trends, opportunities, challenges, and indicators in the field of hybrid-AM. Specifically, it will review and analyze literature related to the development of hybrid additives and subtractive processes known as HASPs, and identify future research avenues. Additionally, the article will identify key traits and research work in HASP systems, as well as present the future of HASPs and other types of hybrid machine tools based on recent trends.
在过去的几十年里,制造和生产经历了快速发展,特别是通过增材制造(AM)和其他数字驱动制造机器的结合,创造了混合增材制造(hybrid-AM)。然而,尽管有显着增长,但由于某些限制,混合增材制造尚未在工业水平上获得接受。本文旨在提供最新信息,并讨论混合am领域的最新研究趋势、机遇、挑战和指标。具体来说,它将回顾和分析与混合添加剂和减法工艺(hasp)发展相关的文献,并确定未来的研究途径。此外,本文将确定HASP系统的关键特征和研究工作,并根据最近的趋势介绍HASP和其他类型的混合机床的未来。
{"title":"Recent trends and research opportunities in hybrid additive manufacturing","authors":"Soni Kumari, Rakesh Gupta, Gopal Krishna, K. Abhishek, Naveenkrishna Alla, K. K. Saxena","doi":"10.1142/s2737599423400017","DOIUrl":"https://doi.org/10.1142/s2737599423400017","url":null,"abstract":"Over the past few decades, manufacturing and production have undergone rapid development, particularly through the combination of additive manufacturing (AM) and other digitally driven manufacturing machines, creating hybrid additive manufacturing (hybrid-AM). However, despite significant growth, hybrid-AM has not yet gained acceptance at an industrial level due to certain limitations. This article aims to provide the latest information and discuss recent research trends, opportunities, challenges, and indicators in the field of hybrid-AM. Specifically, it will review and analyze literature related to the development of hybrid additives and subtractive processes known as HASPs, and identify future research avenues. Additionally, the article will identify key traits and research work in HASP systems, as well as present the future of HASPs and other types of hybrid machine tools based on recent trends.","PeriodicalId":29682,"journal":{"name":"Innovation and Emerging Technologies","volume":"134 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89444782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using automation and machine learning to maximize tool use in turning centers for better surface finish 使用自动化和机器学习来最大限度地提高车削中心的刀具使用率,以获得更好的表面光洁度
Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1142/s2737599423400030
Akash D. Pandya, Ajay M. Patel, B. Hindocha, M. Kumar, Ankit D. Oza, K. Bhole, M. Kumar, Manish Gupta
In modern manufacturing industries, automated machining systems have become a necessity. However, optimizing resource utilization and achieving a good surface finish remain challenging tasks. Excessive tool usage and poor surface finish are common problems encountered in turning centers, which affect productivity and product quality. In this research, we propose an approach that leverages automation and machine learning techniques to maximize tool use and improve surface finish. Our objective is to investigate the relationship between tool life and surface roughness and to develop a method that can optimize cutting parameters for turning centers. We have conducted an experimental study to evaluate the proposed approach, which involves the automatic determination of cutting parameters based on machine learning algorithms, and concluded a cutting speed of 43.10[Formula: see text]m/min, the surface finish achieved for aluminum material was 1.98[Formula: see text][Formula: see text]m. In the case of mild steel material, the surface finish was 12[Formula: see text][Formula: see text]m at a cutting speed of 25.13[Formula: see text]m/min. Similarly, for cast iron material, the surface finish was 8.45[Formula: see text][Formula: see text]m at a cutting speed of 30.16[Formula: see text]m/min. Our results show that the proposed method outperforms the traditional manual method in terms of surface finish, tool usage, and machining time. Our approach can be applied to other machining systems, providing a practical and effective solution to improve the efficiency and quality of machining processes. This paper presents an experiment that explores the relationship between tool life and surface roughness. Furthermore, an automated approach is proposed for eliminating G code in machining, which can improve the efficiency of machine tools and result in a better surface finish. Objective: To maximize tool use and improve surface finish in turning centers by incorporating automation and machine learning. Idea: This research aims to explore the use of automation and machine learning in turning centers to optimize the cutting parameters and achieve a better surface finish. Description of the idea: The study was conducted by performing experiments on three different materials, i.e., aluminum, mild steel, and cast iron. The cutting parameters, including spindle speed, feed, and depth of cut, were controlled by a programmable logic controller (PLC) integrated with a tachometer and Vernier scale. The surface finish was measured using a surface roughness tester, and the data was analyzed using a supervised machine learning algorithm.
在现代制造业中,自动化加工系统已成为一种必需品。然而,优化资源利用率和实现良好的表面光洁度仍然是一项具有挑战性的任务。车削中心刀具使用过多、表面光洁度差是车削中心常见的问题,影响了生产效率和产品质量。在这项研究中,我们提出了一种利用自动化和机器学习技术来最大化工具使用和提高表面光洁度的方法。我们的目标是研究刀具寿命和表面粗糙度之间的关系,并开发一种方法,可以优化车削中心的切削参数。我们对提出的方法进行了实验研究,该方法涉及到基于机器学习算法的自动确定切削参数,得出切削速度为43.10[公式:见文]m/min时,铝材料的表面光洁度为1.98[公式:见文]m。对于低碳钢材料,在切削速度为25.13 m/min时,表面光洁度为12[公式:见文][公式:见文]m/min。同样,对于铸铁材料,在切削速度为30.16[公式:见文]m/min时,表面光洁度为8.45[公式:见文]m。结果表明,该方法在表面光洁度、刀具使用率和加工时间方面优于传统的手工方法。我们的方法可以应用于其他加工系统,为提高加工过程的效率和质量提供了实用有效的解决方案。本文提出了一个实验,探讨了刀具寿命与表面粗糙度之间的关系。在此基础上,提出了一种消除加工中G码的自动化方法,提高了机床的加工效率和表面光洁度。目的:通过结合自动化和机器学习,最大限度地提高车削中心的刀具利用率和表面光洁度。本研究旨在探索在车削中心使用自动化和机器学习来优化切削参数并获得更好的表面光洁度。想法描述:这项研究是通过对三种不同的材料,即铝、低碳钢和铸铁进行实验来进行的。切削参数包括主轴转速、进给量和切削深度,由集成了转速表和游标的可编程逻辑控制器(PLC)控制。使用表面粗糙度测试仪测量表面光洁度,并使用监督机器学习算法分析数据。
{"title":"Using automation and machine learning to maximize tool use in turning centers for better surface finish","authors":"Akash D. Pandya, Ajay M. Patel, B. Hindocha, M. Kumar, Ankit D. Oza, K. Bhole, M. Kumar, Manish Gupta","doi":"10.1142/s2737599423400030","DOIUrl":"https://doi.org/10.1142/s2737599423400030","url":null,"abstract":"In modern manufacturing industries, automated machining systems have become a necessity. However, optimizing resource utilization and achieving a good surface finish remain challenging tasks. Excessive tool usage and poor surface finish are common problems encountered in turning centers, which affect productivity and product quality. In this research, we propose an approach that leverages automation and machine learning techniques to maximize tool use and improve surface finish. Our objective is to investigate the relationship between tool life and surface roughness and to develop a method that can optimize cutting parameters for turning centers. We have conducted an experimental study to evaluate the proposed approach, which involves the automatic determination of cutting parameters based on machine learning algorithms, and concluded a cutting speed of 43.10[Formula: see text]m/min, the surface finish achieved for aluminum material was 1.98[Formula: see text][Formula: see text]m. In the case of mild steel material, the surface finish was 12[Formula: see text][Formula: see text]m at a cutting speed of 25.13[Formula: see text]m/min. Similarly, for cast iron material, the surface finish was 8.45[Formula: see text][Formula: see text]m at a cutting speed of 30.16[Formula: see text]m/min. Our results show that the proposed method outperforms the traditional manual method in terms of surface finish, tool usage, and machining time. Our approach can be applied to other machining systems, providing a practical and effective solution to improve the efficiency and quality of machining processes. This paper presents an experiment that explores the relationship between tool life and surface roughness. Furthermore, an automated approach is proposed for eliminating G code in machining, which can improve the efficiency of machine tools and result in a better surface finish. Objective: To maximize tool use and improve surface finish in turning centers by incorporating automation and machine learning. Idea: This research aims to explore the use of automation and machine learning in turning centers to optimize the cutting parameters and achieve a better surface finish. Description of the idea: The study was conducted by performing experiments on three different materials, i.e., aluminum, mild steel, and cast iron. The cutting parameters, including spindle speed, feed, and depth of cut, were controlled by a programmable logic controller (PLC) integrated with a tachometer and Vernier scale. The surface finish was measured using a surface roughness tester, and the data was analyzed using a supervised machine learning algorithm.","PeriodicalId":29682,"journal":{"name":"Innovation and Emerging Technologies","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75638492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-directive multiband microstrip patch antenna for biomedical applications, inspired by metamaterial 高指示多波段微带贴片天线的生物医学应用,灵感来自超材料
Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1142/s2737599423500044
P. Arockia Michael Mercy, K. S. Joseph Wilson
Recent advancements in medical technology impose a limited number of devices for biomedical applications. A variety of techniques are being proposed to improve the performance of novel antenna designs in response to the rapid development of modern wireless technologies. A miniaturised microstrip antenna structure based on metamaterial (MTM) is presented here. The objective of this work is to present a high-directive antenna for wireless systems utilising MTM properties. Directivity is improved by the incorporation of the MTM structure on the ground structure. In order to improve the performance parameters of the antenna for medical applications, this study provides the design and analysis of a multiband patch antenna employing split-ring MTM. The split-ring resonator (SRR) MTM structures are embedded in a unique and novel way in the ground structure of the antenna. So that subwavelength modes get introduced in the patch cavity and a good performance characteristics is obtained. The reference antenna is a rectangular microstrip patch antenna exhibiting a directivity of 1.1823[Formula: see text]dB that resonates at a frequency of 2.32[Formula: see text]GHz. The optimised SRR MTM is positioned in the ground plane of the suggested antenna to increase the directivity of the antenna. This technology covers the frequency range between 2.24 and 3.96[Formula: see text]GHz used for biomedical applications and the ultra-wideband (UWB) range from 4.48 to 9.08[Formula: see text]GHz used for medical applications, industrial and scientific areas. The number of gaps of the rectangular-shaped SRRs is a key component of the enhancement of directivity from 1.1823 to 8.88823[Formula: see text]dB.
最近医疗技术的进步限制了生物医学应用的设备数量。为了应对现代无线技术的快速发展,人们提出了各种技术来提高新型天线设计的性能。提出了一种基于超材料(MTM)的微带天线结构。这项工作的目的是提出一个利用MTM特性的无线系统的高指向性天线。通过在地面结构上加入MTM结构,提高了指向性。为了提高医学应用天线的性能参数,本研究提供了一种采用分环MTM的多波段贴片天线的设计和分析。劈环谐振器(SRR) MTM结构以一种独特而新颖的方式嵌入天线的地面结构中。因此,在贴片腔中引入了亚波长模式,获得了良好的性能特性。参考天线是一个矩形微带贴片天线,其指向性为1.1823 dB,谐振频率为2.32 GHz[公式:见文本]。优化的SRR MTM位于建议天线的地平面上,以增加天线的指向性。该技术涵盖用于生物医学应用的2.24至3.96 GHz的频率范围[公式:见文本]和用于医疗、工业和科学领域的4.48至9.08 GHz的超宽带(UWB)范围。矩形srr的间隙数是指向性从1.1823增强到8.88823的关键组成部分[公式:见文本]dB。
{"title":"High-directive multiband microstrip patch antenna for biomedical applications, inspired by metamaterial","authors":"P. Arockia Michael Mercy, K. S. Joseph Wilson","doi":"10.1142/s2737599423500044","DOIUrl":"https://doi.org/10.1142/s2737599423500044","url":null,"abstract":"Recent advancements in medical technology impose a limited number of devices for biomedical applications. A variety of techniques are being proposed to improve the performance of novel antenna designs in response to the rapid development of modern wireless technologies. A miniaturised microstrip antenna structure based on metamaterial (MTM) is presented here. The objective of this work is to present a high-directive antenna for wireless systems utilising MTM properties. Directivity is improved by the incorporation of the MTM structure on the ground structure. In order to improve the performance parameters of the antenna for medical applications, this study provides the design and analysis of a multiband patch antenna employing split-ring MTM. The split-ring resonator (SRR) MTM structures are embedded in a unique and novel way in the ground structure of the antenna. So that subwavelength modes get introduced in the patch cavity and a good performance characteristics is obtained. The reference antenna is a rectangular microstrip patch antenna exhibiting a directivity of 1.1823[Formula: see text]dB that resonates at a frequency of 2.32[Formula: see text]GHz. The optimised SRR MTM is positioned in the ground plane of the suggested antenna to increase the directivity of the antenna. This technology covers the frequency range between 2.24 and 3.96[Formula: see text]GHz used for biomedical applications and the ultra-wideband (UWB) range from 4.48 to 9.08[Formula: see text]GHz used for medical applications, industrial and scientific areas. The number of gaps of the rectangular-shaped SRRs is a key component of the enhancement of directivity from 1.1823 to 8.88823[Formula: see text]dB.","PeriodicalId":29682,"journal":{"name":"Innovation and Emerging Technologies","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135319310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-performance thermosets for additive manufacturing 用于增材制造的高性能热固性材料
Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1142/s2737599423300039
Thamires Andrade Lima, Anh Fridman, Jaclyn McLaughlin, Clayton Francis, Anthony Clay, Ganesh Narayanan, Heedong Yoon, Mohanad Idrees, Giuseppe R. Palmese, John La Scala, Nicolas Javier Alvarez
Additive manufacturing (AM) has come a long way since its initial inception. Previously considered a fast prototyping method, it offers significant benefits for use as a method of producing user-end parts that are limited in quantity, customizable, and/or complicated geometries. For AM to be considered in high-performance applications, such as automotive and aerospace, we must consider AM technology and the available and compatible printing materials. Typically only thermoset plastic resins are capable of meeting high-performance specifications, such as sufficiently high strength, stiffness, and toughness, as well as excellent chemical and environmental resistance. This review presents a broad overview of the available high-performance thermoset chemistries and formulations, i.e., resin blends. The base resin chemistries that are covered are: vinyl, epoxy, imides, cyanate ester, urethanes, benzoxazine, and click chemistries (e.g., Michael addition). Subsequently, more application-relevant blends of these base resins are discussed. Each section focuses on resin details such as reaction mechanisms, typical monomer structure, mechanical properties, and applications specific to AM. The review is organized as follows. We begin with an introduction on the state-of-the-art, the challenges still faced by the field, and a benchmark definition of “high performance.” This is followed by a discussion of the available AM technologies for thermoset printing, with a focus on their advantages and disadvantages. Next, we cover the details of different resin chemistry, followed by their blends. The following section details the difficulties in developing AM technologies that allow for the incorporation of fillers, such as rheological modifiers and reinforcements. The review ends with a perspective on the future of AM technologies that would bridge the gap between pure resin printing and the much needed composite printing for high-performance applications.
增材制造(AM)自诞生以来已经走过了漫长的道路。以前被认为是一种快速原型制作方法,它为生产数量有限、可定制和/或复杂几何形状的用户端部件提供了显著的好处。为了在高性能应用中考虑增材制造,例如汽车和航空航天,我们必须考虑增材制造技术以及可用和兼容的打印材料。通常,只有热固性塑料树脂能够满足高性能规格,例如足够高的强度、刚度和韧性,以及出色的耐化学性和耐环境性。这篇综述介绍了可用的高性能热固性化学物质和配方,即树脂共混物的广泛概述。所涵盖的基础树脂化学物质有:乙烯基,环氧树脂,亚胺,氰酸酯,聚氨酯,苯并恶嗪和点击化学物质(例如,Michael addition)。随后,讨论了这些基础树脂的更多应用相关的共混物。每个部分都侧重于树脂的细节,如反应机制,典型的单体结构,机械性能和特定于AM的应用。审查安排如下:我们首先介绍了该领域的最新技术、仍然面临的挑战,以及“高性能”的基准定义。随后讨论了热固性印刷可用的增材制造技术,重点讨论了它们的优缺点。接下来,我们将介绍不同树脂化学的细节,然后是它们的混合物。下一节详细介绍了开发允许掺入填料(如流变改性剂和增强剂)的增材制造技术的困难。文章最后展望了增材制造技术的未来,该技术将弥合纯树脂打印和高性能应用急需的复合材料打印之间的差距。
{"title":"High-performance thermosets for additive manufacturing","authors":"Thamires Andrade Lima, Anh Fridman, Jaclyn McLaughlin, Clayton Francis, Anthony Clay, Ganesh Narayanan, Heedong Yoon, Mohanad Idrees, Giuseppe R. Palmese, John La Scala, Nicolas Javier Alvarez","doi":"10.1142/s2737599423300039","DOIUrl":"https://doi.org/10.1142/s2737599423300039","url":null,"abstract":"Additive manufacturing (AM) has come a long way since its initial inception. Previously considered a fast prototyping method, it offers significant benefits for use as a method of producing user-end parts that are limited in quantity, customizable, and/or complicated geometries. For AM to be considered in high-performance applications, such as automotive and aerospace, we must consider AM technology and the available and compatible printing materials. Typically only thermoset plastic resins are capable of meeting high-performance specifications, such as sufficiently high strength, stiffness, and toughness, as well as excellent chemical and environmental resistance. This review presents a broad overview of the available high-performance thermoset chemistries and formulations, i.e., resin blends. The base resin chemistries that are covered are: vinyl, epoxy, imides, cyanate ester, urethanes, benzoxazine, and click chemistries (e.g., Michael addition). Subsequently, more application-relevant blends of these base resins are discussed. Each section focuses on resin details such as reaction mechanisms, typical monomer structure, mechanical properties, and applications specific to AM. The review is organized as follows. We begin with an introduction on the state-of-the-art, the challenges still faced by the field, and a benchmark definition of “high performance.” This is followed by a discussion of the available AM technologies for thermoset printing, with a focus on their advantages and disadvantages. Next, we cover the details of different resin chemistry, followed by their blends. The following section details the difficulties in developing AM technologies that allow for the incorporation of fillers, such as rheological modifiers and reinforcements. The review ends with a perspective on the future of AM technologies that would bridge the gap between pure resin printing and the much needed composite printing for high-performance applications.","PeriodicalId":29682,"journal":{"name":"Innovation and Emerging Technologies","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135610686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Modular structural elements incorporating decommissioned flexible flowlines and geopolymer concrete 模块化结构元素结合了退役的柔性管线和地聚合物混凝土
Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1142/s2737599423300027
F. Aslani, Yifan Zhang, A. Valizadeh, Lendyn Philip
This study proposes the design of modular structural geopolymer concrete elements incorporating decommissioned flexible flowlines. To evaluate and assess the feasibility of the proposed modular structural elements, this study aims to investigate its feasibility from the perspectives of sustainability including cost analysis, circular economy (CE) analysis and CO2 emission estimate. Moreover, a series of numerical analyses using finite element modelling (FEM) is conducted to provide insight into the mechanical behaviour of such modular columns and beams. Apart from the cost-saving, CE and social impact benefits of the proposed elements, the results indicate that modular structural elements incorporating flowline have shown very high axial, shear and flexural capacities, which make them suitable to be used in high-rising buildings, bridges, etc. The proposed elements can be a solution to decommission and reuse the flexible flowline on a large scale in construction.
本研究提出了结合退役柔性管线的模块化结构地聚合物混凝土构件的设计。本研究从可持续性的角度,包括成本分析、循环经济(CE)分析和二氧化碳排放估算,对所提出的模块化结构构件的可行性进行评估和评估。此外,使用有限元模型(FEM)进行了一系列数值分析,以深入了解这种模块化柱和梁的力学行为。除了成本节约、环境效益和社会影响效益外,研究结果还表明,包含流水线的模块化结构单元具有很高的轴向、剪切和抗弯能力,适合用于高层建筑、桥梁等。所提出的元件可以解决大规模施工中柔性管线的退役和再利用问题。
{"title":"Modular structural elements incorporating decommissioned flexible flowlines and geopolymer concrete","authors":"F. Aslani, Yifan Zhang, A. Valizadeh, Lendyn Philip","doi":"10.1142/s2737599423300027","DOIUrl":"https://doi.org/10.1142/s2737599423300027","url":null,"abstract":"This study proposes the design of modular structural geopolymer concrete elements incorporating decommissioned flexible flowlines. To evaluate and assess the feasibility of the proposed modular structural elements, this study aims to investigate its feasibility from the perspectives of sustainability including cost analysis, circular economy (CE) analysis and CO2 emission estimate. Moreover, a series of numerical analyses using finite element modelling (FEM) is conducted to provide insight into the mechanical behaviour of such modular columns and beams. Apart from the cost-saving, CE and social impact benefits of the proposed elements, the results indicate that modular structural elements incorporating flowline have shown very high axial, shear and flexural capacities, which make them suitable to be used in high-rising buildings, bridges, etc. The proposed elements can be a solution to decommission and reuse the flexible flowline on a large scale in construction.","PeriodicalId":29682,"journal":{"name":"Innovation and Emerging Technologies","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88478065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Industrial and market opportunities in hybrid additive manufacturing 混合增材制造的工业和市场机会
Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1142/s2737599423400029
Soni Kumari, K. Abhishek, Din Bandhu, Pardeep, B. Sunil, Manish Gupta
In the realm of manufacturing, the use of hybrid manufacturing has led to high-speed production by combining additive manufacturing (AM) with other digitally driven manufacturing machines. Despite its rapid growth over the past decade, the acceptance of hybrid AM within the industry has been limited due to various constraints. To achieve industrial acceptance, it is necessary to address the challenges and limitations of AM. As an effort to mitigate environmental concerns, manufacturers have recently started to explore integrating additional and secondary production methods into their manufacturing processes. Integrated production solutions have shown promise in overcoming present-day barriers in production systems by utilizing the best available integration technology. In this context, this article focuses on three critical points in the manufacturing sector. First, recent developments in the integration of AM processes have been significant. Second, integrated technical planning has been improved, which is essential for the successful implementation of hybrid manufacturing. Finally, there is a growing need to understand the mixed supplement production industry that combines both traditional and AM techniques. Thus, it is essential to emphasize advances in AM processes, integrated technical planning, and mixed supplement production industry to meet the demands of a rapidly evolving manufacturing sector.
在制造领域,混合制造的使用通过将增材制造(AM)与其他数字驱动的制造机器相结合,实现了高速生产。尽管在过去十年中增长迅速,但由于各种限制,行业内对混合增材制造的接受程度有限。为了实现工业接受,有必要解决增材制造的挑战和局限性。为了减轻对环境的担忧,制造商最近开始探索将额外的和二次的生产方法整合到他们的制造过程中。集成生产解决方案通过利用最好的可用集成技术,在克服当今生产系统中的障碍方面显示出了希望。在此背景下,本文主要关注制造业的三个关键点。首先,最近在AM工艺集成方面的发展是显著的。二是提高了集成技术规划水平,这是成功实施混合制造的关键。最后,越来越需要了解结合传统和增材制造技术的混合补充剂生产行业。因此,必须强调增材制造工艺、综合技术规划和混合补充生产行业的进步,以满足快速发展的制造业的需求。
{"title":"Industrial and market opportunities in hybrid additive manufacturing","authors":"Soni Kumari, K. Abhishek, Din Bandhu, Pardeep, B. Sunil, Manish Gupta","doi":"10.1142/s2737599423400029","DOIUrl":"https://doi.org/10.1142/s2737599423400029","url":null,"abstract":"In the realm of manufacturing, the use of hybrid manufacturing has led to high-speed production by combining additive manufacturing (AM) with other digitally driven manufacturing machines. Despite its rapid growth over the past decade, the acceptance of hybrid AM within the industry has been limited due to various constraints. To achieve industrial acceptance, it is necessary to address the challenges and limitations of AM. As an effort to mitigate environmental concerns, manufacturers have recently started to explore integrating additional and secondary production methods into their manufacturing processes. Integrated production solutions have shown promise in overcoming present-day barriers in production systems by utilizing the best available integration technology. In this context, this article focuses on three critical points in the manufacturing sector. First, recent developments in the integration of AM processes have been significant. Second, integrated technical planning has been improved, which is essential for the successful implementation of hybrid manufacturing. Finally, there is a growing need to understand the mixed supplement production industry that combines both traditional and AM techniques. Thus, it is essential to emphasize advances in AM processes, integrated technical planning, and mixed supplement production industry to meet the demands of a rapidly evolving manufacturing sector.","PeriodicalId":29682,"journal":{"name":"Innovation and Emerging Technologies","volume":"633 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76812120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting compressive strength of geopolymer concrete using machine learning 利用机器学习预测地聚合物混凝土的抗压强度
Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1142/s2737599423500032
Priyank Gupta, N. Gupta, K. Saxena
The anaconda software required python code in order to run the utilized individual K-nearest neighbor (KNN), random forest regression (RFR), and linear regression (LR) models. The results show that RFR machine learning (ML) technique out of the other utilized models shows the best performance for a used dataset. The findings of this article indicate that the dataset utilized proposed model provides an acceptable algorithm for FACC design and optimization. In the current study of preparation of geopolymer concrete (GPC), relevant variables such as curing, fly ash, calcined clay, added water, super plasticizer, coarse aggregate, quarry stone dust, caustic soda, and water glass were used as input parameters. The ranges, mode, median, standard deviation, and other identifying details were checked using descriptive statistical analysis for the input parameters. The strength due to the compression of FACC GPC was predicted using RFR, LR, and KNN ML techniques, all based on Python coding. The ensemble ML technique, RFR outperformed the individual ML technique, KNN, in terms of prediction. The RFR indicates that the maximum amount of [Formula: see text] is 0.92, and LR provides 0.58, although the KNN was less accurate, with a coefficient of determination of 0.56. The RFR technique’s lower values of errors, mean absolute error (MAE), MSE, and root mean square error (RMSE) yield 1.99, 7.17, and 2.67[Formula: see text]MPa, respectively. The excellent accuracy of the RFR methodology is confirmed by a statistical analysis of errors. Curing temperature, curing hours, molarity of NaOH, and FACC ratio significantly affect the compressive strength (CS) of FACC GPC. The findings indicate that the proposed model provides an acceptable algorithm for FACC design and optimization using RFR among the three combinations of ML methods for a given dataset.
蟒蛇软件需要python代码来运行所使用的单个k最近邻(KNN)、随机森林回归(RFR)和线性回归(LR)模型。结果表明,在使用的数据集上,RFR机器学习(ML)技术在其他使用的模型中表现出最好的性能。本文的研究结果表明,采用该模型的数据集为FACC的设计和优化提供了一种可接受的算法。在目前的地聚合物混凝土(GPC)制备研究中,以养护、粉煤灰、煅烧粘土、添加水、高效增塑剂、粗骨料、采石场石粉、烧碱、水玻璃等相关变量作为输入参数。使用输入参数的描述性统计分析检查范围、模式、中位数、标准差和其他识别细节。使用RFR, LR和KNN ML技术预测FACC GPC压缩的强度,所有这些技术都基于Python编码。在预测方面,集成ML技术RFR优于单个ML技术KNN。RFR表明[公式:见文]的最大值为0.92,LR提供0.58,尽管KNN的准确性较低,其决定系数为0.56。RFR技术的误差下限、平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)分别为1.99、7.17和2.67 MPa[公式见文]。误差的统计分析证实了RFR方法的良好准确性。养护温度、养护时间、NaOH的摩尔浓度和FACC的配比对FACC GPC的抗压强度(CS)有显著影响。研究结果表明,该模型在给定数据集的三种ML方法组合中使用RFR为FACC设计和优化提供了一种可接受的算法。
{"title":"Predicting compressive strength of geopolymer concrete using machine learning","authors":"Priyank Gupta, N. Gupta, K. Saxena","doi":"10.1142/s2737599423500032","DOIUrl":"https://doi.org/10.1142/s2737599423500032","url":null,"abstract":"The anaconda software required python code in order to run the utilized individual K-nearest neighbor (KNN), random forest regression (RFR), and linear regression (LR) models. The results show that RFR machine learning (ML) technique out of the other utilized models shows the best performance for a used dataset. The findings of this article indicate that the dataset utilized proposed model provides an acceptable algorithm for FACC design and optimization. In the current study of preparation of geopolymer concrete (GPC), relevant variables such as curing, fly ash, calcined clay, added water, super plasticizer, coarse aggregate, quarry stone dust, caustic soda, and water glass were used as input parameters. The ranges, mode, median, standard deviation, and other identifying details were checked using descriptive statistical analysis for the input parameters. The strength due to the compression of FACC GPC was predicted using RFR, LR, and KNN ML techniques, all based on Python coding. The ensemble ML technique, RFR outperformed the individual ML technique, KNN, in terms of prediction. The RFR indicates that the maximum amount of [Formula: see text] is 0.92, and LR provides 0.58, although the KNN was less accurate, with a coefficient of determination of 0.56. The RFR technique’s lower values of errors, mean absolute error (MAE), MSE, and root mean square error (RMSE) yield 1.99, 7.17, and 2.67[Formula: see text]MPa, respectively. The excellent accuracy of the RFR methodology is confirmed by a statistical analysis of errors. Curing temperature, curing hours, molarity of NaOH, and FACC ratio significantly affect the compressive strength (CS) of FACC GPC. The findings indicate that the proposed model provides an acceptable algorithm for FACC design and optimization using RFR among the three combinations of ML methods for a given dataset.","PeriodicalId":29682,"journal":{"name":"Innovation and Emerging Technologies","volume":"154 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86276045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
期刊
Innovation and Emerging Technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1