Benjamin H. Tiger, Stephen Burns, Robin R. Dawson, Nick Scroxton, Laurie R. Godfrey, Lovasoa Ranivoharimanana, Peterson Faina, David McGee
{"title":"印度洋纬向变率驱动马达加斯加北部千年尺度降水变化","authors":"Benjamin H. Tiger, Stephen Burns, Robin R. Dawson, Nick Scroxton, Laurie R. Godfrey, Lovasoa Ranivoharimanana, Peterson Faina, David McGee","doi":"10.1029/2023pa004626","DOIUrl":null,"url":null,"abstract":"Abstract The low latitude Indian Ocean is warming faster than other tropical basins, and its interannual climate variability is projected to become more extreme under future emissions scenarios with substantial impacts on developing Indian Ocean rim countries. Therefore, it has become increasingly important to understand the drivers of regional precipitation in a changing climate. Here we present a new speleothem record from Anjohibe, a cave in northwest (NW) Madagascar well situated to record past changes in the Intertropical Convergence Zone (ITCZ). U‐Th ages date speleothem growth from 27 to 14 ka. δ 18 O, δ 13 C, and trace metal proxies reconstruct drier conditions during Heinrich Stadials 1 and 2, and wetter conditions during the Last Glacial Maximum and Bølling–Allerød. This is surprising considering hypotheses arguing for southward (northward) ITCZ shifts during North Atlantic cooling (warming) events, which would be expected to result in wetter (drier) conditions at Anjohibe in the Southern Hemisphere tropics. The reconstructed Indian Ocean zonal (west‐east) sea surface temperature (SST) gradient is in close agreement with hydroclimate proxies in NW Madagascar, with periods of increased precipitation correlating with relatively warmer conditions in the western Indian Ocean and cooler conditions in the eastern Indian Ocean. Such gradients could drive long‐term shifts in the strength of the Walker circulation with widespread effects on hydroclimate across East Africa. These results suggest that during abrupt millennial‐scale climate changes, it is not meridional ITCZ shifts, but the tropical Indian Ocean SST gradient and Walker circulation driving East African hydroclimate variability.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":"67 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zonal Indian Ocean Variability Drives Millennial‐Scale Precipitation Changes in Northern Madagascar\",\"authors\":\"Benjamin H. Tiger, Stephen Burns, Robin R. Dawson, Nick Scroxton, Laurie R. Godfrey, Lovasoa Ranivoharimanana, Peterson Faina, David McGee\",\"doi\":\"10.1029/2023pa004626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The low latitude Indian Ocean is warming faster than other tropical basins, and its interannual climate variability is projected to become more extreme under future emissions scenarios with substantial impacts on developing Indian Ocean rim countries. Therefore, it has become increasingly important to understand the drivers of regional precipitation in a changing climate. Here we present a new speleothem record from Anjohibe, a cave in northwest (NW) Madagascar well situated to record past changes in the Intertropical Convergence Zone (ITCZ). U‐Th ages date speleothem growth from 27 to 14 ka. δ 18 O, δ 13 C, and trace metal proxies reconstruct drier conditions during Heinrich Stadials 1 and 2, and wetter conditions during the Last Glacial Maximum and Bølling–Allerød. This is surprising considering hypotheses arguing for southward (northward) ITCZ shifts during North Atlantic cooling (warming) events, which would be expected to result in wetter (drier) conditions at Anjohibe in the Southern Hemisphere tropics. The reconstructed Indian Ocean zonal (west‐east) sea surface temperature (SST) gradient is in close agreement with hydroclimate proxies in NW Madagascar, with periods of increased precipitation correlating with relatively warmer conditions in the western Indian Ocean and cooler conditions in the eastern Indian Ocean. Such gradients could drive long‐term shifts in the strength of the Walker circulation with widespread effects on hydroclimate across East Africa. These results suggest that during abrupt millennial‐scale climate changes, it is not meridional ITCZ shifts, but the tropical Indian Ocean SST gradient and Walker circulation driving East African hydroclimate variability.\",\"PeriodicalId\":54239,\"journal\":{\"name\":\"Paleoceanography and Paleoclimatology\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography and Paleoclimatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/2023pa004626\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023pa004626","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Zonal Indian Ocean Variability Drives Millennial‐Scale Precipitation Changes in Northern Madagascar
Abstract The low latitude Indian Ocean is warming faster than other tropical basins, and its interannual climate variability is projected to become more extreme under future emissions scenarios with substantial impacts on developing Indian Ocean rim countries. Therefore, it has become increasingly important to understand the drivers of regional precipitation in a changing climate. Here we present a new speleothem record from Anjohibe, a cave in northwest (NW) Madagascar well situated to record past changes in the Intertropical Convergence Zone (ITCZ). U‐Th ages date speleothem growth from 27 to 14 ka. δ 18 O, δ 13 C, and trace metal proxies reconstruct drier conditions during Heinrich Stadials 1 and 2, and wetter conditions during the Last Glacial Maximum and Bølling–Allerød. This is surprising considering hypotheses arguing for southward (northward) ITCZ shifts during North Atlantic cooling (warming) events, which would be expected to result in wetter (drier) conditions at Anjohibe in the Southern Hemisphere tropics. The reconstructed Indian Ocean zonal (west‐east) sea surface temperature (SST) gradient is in close agreement with hydroclimate proxies in NW Madagascar, with periods of increased precipitation correlating with relatively warmer conditions in the western Indian Ocean and cooler conditions in the eastern Indian Ocean. Such gradients could drive long‐term shifts in the strength of the Walker circulation with widespread effects on hydroclimate across East Africa. These results suggest that during abrupt millennial‐scale climate changes, it is not meridional ITCZ shifts, but the tropical Indian Ocean SST gradient and Walker circulation driving East African hydroclimate variability.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.