双功能NH4BF4对高效CsPbI2Br太阳能电池的埋藏界面管理,其Voc大于1.4 V

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-11-10 DOI:10.1016/j.jechem.2023.10.053
Fazheng Qiu , Ming-Hua Li , Jinpeng Wu , Jin-Song Hu
{"title":"双功能NH4BF4对高效CsPbI2Br太阳能电池的埋藏界面管理,其Voc大于1.4 V","authors":"Fazheng Qiu ,&nbsp;Ming-Hua Li ,&nbsp;Jinpeng Wu ,&nbsp;Jin-Song Hu","doi":"10.1016/j.jechem.2023.10.053","DOIUrl":null,"url":null,"abstract":"<div><p>CsPbI<sub>2</sub>Br perovskite solar cells (PSCs) have drawn tremendous attention due to their suitable bandgap, excellent photothermal stability, and great potential as an ideal candidate for top cells in tandem solar cells. However, the abundant defects at the buried interface and perovskite layer induce severe charge recombination, resulting in the open-circuit voltage (<em>V</em><sub>oc</sub>) output and stability much lower than anticipated. Herein, a novel buried interface management strategy is developed to regulate interfacial carrier dynamics and CsPbI<sub>2</sub>Br defects by introducing ammonium tetrafluoroborate (NH<sub>4</sub>BF<sub>4</sub>), thereby resulting in both high CsPbI<sub>2</sub>Br crystallization and minimized interfacial energy losses. Specifically, NH<sub>4</sub><sup>+</sup> ions could preferentially heal hydroxyl groups on the SnO<sub>2</sub> surface and balance energy level alignment between SnO<sub>2</sub> and CsPbI<sub>2</sub>Br, enhancing charge transport efficiency, while BF<sub>4</sub><sup>−</sup> anions as a quasi-halogen regulate crystal growth of CsPbI<sub>2</sub>Br, thus reducing perovskite defects. Additionally, it is proved that eliminating hydroxyl groups at the buried interface enhances the iodide migration activation energy of CsPbI<sub>2</sub>Br for strengthening the phase stability. As a result, the optimized CsPbI<sub>2</sub>Br PSCs realize a remarkable efficiency of 17.09% and an ultrahigh <em>V</em><sub>oc</sub> output of 1.43 V, which is one of the highest values for CsPbI<sub>2</sub>Br PSCs.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 364-370"},"PeriodicalIF":14.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buried interface management via bifunctional NH4BF4 towards efficient CsPbI2Br solar cells with a Voc over 1.4 V\",\"authors\":\"Fazheng Qiu ,&nbsp;Ming-Hua Li ,&nbsp;Jinpeng Wu ,&nbsp;Jin-Song Hu\",\"doi\":\"10.1016/j.jechem.2023.10.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CsPbI<sub>2</sub>Br perovskite solar cells (PSCs) have drawn tremendous attention due to their suitable bandgap, excellent photothermal stability, and great potential as an ideal candidate for top cells in tandem solar cells. However, the abundant defects at the buried interface and perovskite layer induce severe charge recombination, resulting in the open-circuit voltage (<em>V</em><sub>oc</sub>) output and stability much lower than anticipated. Herein, a novel buried interface management strategy is developed to regulate interfacial carrier dynamics and CsPbI<sub>2</sub>Br defects by introducing ammonium tetrafluoroborate (NH<sub>4</sub>BF<sub>4</sub>), thereby resulting in both high CsPbI<sub>2</sub>Br crystallization and minimized interfacial energy losses. Specifically, NH<sub>4</sub><sup>+</sup> ions could preferentially heal hydroxyl groups on the SnO<sub>2</sub> surface and balance energy level alignment between SnO<sub>2</sub> and CsPbI<sub>2</sub>Br, enhancing charge transport efficiency, while BF<sub>4</sub><sup>−</sup> anions as a quasi-halogen regulate crystal growth of CsPbI<sub>2</sub>Br, thus reducing perovskite defects. Additionally, it is proved that eliminating hydroxyl groups at the buried interface enhances the iodide migration activation energy of CsPbI<sub>2</sub>Br for strengthening the phase stability. As a result, the optimized CsPbI<sub>2</sub>Br PSCs realize a remarkable efficiency of 17.09% and an ultrahigh <em>V</em><sub>oc</sub> output of 1.43 V, which is one of the highest values for CsPbI<sub>2</sub>Br PSCs.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"89 \",\"pages\":\"Pages 364-370\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623006320\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623006320","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

CsPbI2Br钙钛矿太阳能电池(PSCs)由于其合适的带隙、优异的光热稳定性和作为串联太阳能电池的理想顶层电池的巨大潜力而引起了人们的广泛关注。然而,埋藏界面和钙钛矿层的大量缺陷导致严重的电荷复合,导致开路电压(Voc)输出和稳定性远低于预期。本文提出了一种新的埋藏界面管理策略,通过引入四氟硼酸铵(NH4BF4)来调节界面载流子动力学和CsPbI2Br缺陷,从而实现高CsPbI2Br结晶和最小化界面能损失。具体来说,NH4+离子可以优先修复SnO2表面的羟基,平衡SnO2与CsPbI2Br之间的能级排列,提高电荷传输效率,而BF4−阴离子作为准卤素调节CsPbI2Br的晶体生长,从而减少钙钛矿缺陷。此外,还证明了去除埋藏界面处的羟基可以提高CsPbI2Br的碘化物迁移活化能,从而增强相稳定性。结果表明,优化后的CsPbI2Br PSCs效率高达17.09%,Voc输出高达1.43 V,是目前CsPbI2Br PSCs中Voc输出最高的器件之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Buried interface management via bifunctional NH4BF4 towards efficient CsPbI2Br solar cells with a Voc over 1.4 V

CsPbI2Br perovskite solar cells (PSCs) have drawn tremendous attention due to their suitable bandgap, excellent photothermal stability, and great potential as an ideal candidate for top cells in tandem solar cells. However, the abundant defects at the buried interface and perovskite layer induce severe charge recombination, resulting in the open-circuit voltage (Voc) output and stability much lower than anticipated. Herein, a novel buried interface management strategy is developed to regulate interfacial carrier dynamics and CsPbI2Br defects by introducing ammonium tetrafluoroborate (NH4BF4), thereby resulting in both high CsPbI2Br crystallization and minimized interfacial energy losses. Specifically, NH4+ ions could preferentially heal hydroxyl groups on the SnO2 surface and balance energy level alignment between SnO2 and CsPbI2Br, enhancing charge transport efficiency, while BF4 anions as a quasi-halogen regulate crystal growth of CsPbI2Br, thus reducing perovskite defects. Additionally, it is proved that eliminating hydroxyl groups at the buried interface enhances the iodide migration activation energy of CsPbI2Br for strengthening the phase stability. As a result, the optimized CsPbI2Br PSCs realize a remarkable efficiency of 17.09% and an ultrahigh Voc output of 1.43 V, which is one of the highest values for CsPbI2Br PSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Durable poly(binaphthyl-co-p-terphenyl piperidinium)-based anion exchange membranes with dual side chains Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms Chemico-biological conversion of carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1