S.‐B. Wilmes, V. K. Pedersen, M. Schindelegger, J. A. M. Green
{"title":"晚更新世潮汐演化与潮汐耗散","authors":"S.‐B. Wilmes, V. K. Pedersen, M. Schindelegger, J. A. M. Green","doi":"10.1029/2023pa004727","DOIUrl":null,"url":null,"abstract":"Abstract Studies of the Last Glacial Maximum (LGM; 26.5–19 ka) tides showed strong enhancements in open ocean tidal amplitudes and dissipation rates; however, changes prior to the LGM remain largely unexplored. Using two different ice sheet and sea level reconstructions, we explicitly simulate the evolution of the leading semi‐diurnal and diurnal tidal constituents (M 2 , S 2 , K 1 , and O 1 ) over the last glacial cycle with a global tide model. Both sets of simulations show that global changes, dominated by the Atlantic, take place for the semi‐diurnal constituents, while changes for the diurnal constituents are mainly regional. Irrespective of the reconstruction, open ocean dissipation peaks during the sea level lowstands of MIS 2 (∼20 ka) and MIS 4 (∼60 ka), although dissipation values prior to MIS 2 are sensitive to differences in reconstructed ice sheet extent. Using the statistically significant relationship between global mean sea level and dissipation, we apply regression analysis to infer open ocean and shelf dissipation, respectively, over the last four glacial cycles back to 430 ka. Our analysis shows that open ocean tidal energy was probably increased for most of this period, peaking during glacial maxima, and returning to near‐present‐day values during interglacials. Due to tidal resonance during glacial phases, small changes in bathymetry could have caused large changes in tidal amplitudes and dissipation, emphasizing the need for accurate ice margin reconstructions. During glacial phases, once global mean sea level decreased by more than ∼100 m, the amount of open ocean tidal energy available for ocean mixing approximately doubled.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":"288 1-2","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Late Pleistocene Evolution of Tides and Tidal Dissipation\",\"authors\":\"S.‐B. Wilmes, V. K. Pedersen, M. Schindelegger, J. A. M. Green\",\"doi\":\"10.1029/2023pa004727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Studies of the Last Glacial Maximum (LGM; 26.5–19 ka) tides showed strong enhancements in open ocean tidal amplitudes and dissipation rates; however, changes prior to the LGM remain largely unexplored. Using two different ice sheet and sea level reconstructions, we explicitly simulate the evolution of the leading semi‐diurnal and diurnal tidal constituents (M 2 , S 2 , K 1 , and O 1 ) over the last glacial cycle with a global tide model. Both sets of simulations show that global changes, dominated by the Atlantic, take place for the semi‐diurnal constituents, while changes for the diurnal constituents are mainly regional. Irrespective of the reconstruction, open ocean dissipation peaks during the sea level lowstands of MIS 2 (∼20 ka) and MIS 4 (∼60 ka), although dissipation values prior to MIS 2 are sensitive to differences in reconstructed ice sheet extent. Using the statistically significant relationship between global mean sea level and dissipation, we apply regression analysis to infer open ocean and shelf dissipation, respectively, over the last four glacial cycles back to 430 ka. Our analysis shows that open ocean tidal energy was probably increased for most of this period, peaking during glacial maxima, and returning to near‐present‐day values during interglacials. Due to tidal resonance during glacial phases, small changes in bathymetry could have caused large changes in tidal amplitudes and dissipation, emphasizing the need for accurate ice margin reconstructions. During glacial phases, once global mean sea level decreased by more than ∼100 m, the amount of open ocean tidal energy available for ocean mixing approximately doubled.\",\"PeriodicalId\":54239,\"journal\":{\"name\":\"Paleoceanography and Paleoclimatology\",\"volume\":\"288 1-2\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography and Paleoclimatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/2023pa004727\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023pa004727","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Late Pleistocene Evolution of Tides and Tidal Dissipation
Abstract Studies of the Last Glacial Maximum (LGM; 26.5–19 ka) tides showed strong enhancements in open ocean tidal amplitudes and dissipation rates; however, changes prior to the LGM remain largely unexplored. Using two different ice sheet and sea level reconstructions, we explicitly simulate the evolution of the leading semi‐diurnal and diurnal tidal constituents (M 2 , S 2 , K 1 , and O 1 ) over the last glacial cycle with a global tide model. Both sets of simulations show that global changes, dominated by the Atlantic, take place for the semi‐diurnal constituents, while changes for the diurnal constituents are mainly regional. Irrespective of the reconstruction, open ocean dissipation peaks during the sea level lowstands of MIS 2 (∼20 ka) and MIS 4 (∼60 ka), although dissipation values prior to MIS 2 are sensitive to differences in reconstructed ice sheet extent. Using the statistically significant relationship between global mean sea level and dissipation, we apply regression analysis to infer open ocean and shelf dissipation, respectively, over the last four glacial cycles back to 430 ka. Our analysis shows that open ocean tidal energy was probably increased for most of this period, peaking during glacial maxima, and returning to near‐present‐day values during interglacials. Due to tidal resonance during glacial phases, small changes in bathymetry could have caused large changes in tidal amplitudes and dissipation, emphasizing the need for accurate ice margin reconstructions. During glacial phases, once global mean sea level decreased by more than ∼100 m, the amount of open ocean tidal energy available for ocean mixing approximately doubled.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.