Paulo Henrique Teixeira França Alves, Gracie Bahr, Abigail Clarke-Sather, Melissa Maurer-Jones
{"title":"结合灵活和可持续设计原则评价设计:纺织品回收应用","authors":"Paulo Henrique Teixeira França Alves, Gracie Bahr, Abigail Clarke-Sather, Melissa Maurer-Jones","doi":"10.1115/1.4063993","DOIUrl":null,"url":null,"abstract":"Abstract As rates of textile manufacturing and disposal escalate, the ramifications to health and the environment through water pollution, microplastic contaminant concentrations, and greenhouse gas emissions increases. Discarding over 15.4 million tons of textiles each year, the U.S. recycles less than 15%, sending the remainder to landfills and incinerators. Textile reuse is not sufficient to de-escalate the situation; recycling is necessary. Most textile recycling technologies from past decades are expensive, create low quality outputs, or are not industry scalable. For viability, textile recycling system designs must evolve with the rapid pace of a dynamic textile and fashion industry. For any design to be sustainable, it must also be flexible to adapt with technological, user, societal, and environmental condition advances. To this end flexible and sustainable design principles were compared: overlapping principles were combined and missing principles were added to create twelve overarching sustainable, flexible design principles (DfSFlex). The Fiber Shredder was designed and built with flexibility and sustainability as its goal and evaluated on how well it met DfSFlex principles. An evaluation of the Fiber Shredder's performance found that increased speed and processing time increases the generation of the desired output - fibers and yarns, manifesting the principles of Design for Separation in design and Facilitate Resource Recovery in processing. The development of this technology, with the application of sustainable and flexible design, fiber-to-fiber recycling using mechanical systems appears promising for maintaining value while repurposing textiles.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":"48 3","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Flexible and Sustainable Design Principles for Evaluating Designs: Textile Recycling Application\",\"authors\":\"Paulo Henrique Teixeira França Alves, Gracie Bahr, Abigail Clarke-Sather, Melissa Maurer-Jones\",\"doi\":\"10.1115/1.4063993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As rates of textile manufacturing and disposal escalate, the ramifications to health and the environment through water pollution, microplastic contaminant concentrations, and greenhouse gas emissions increases. Discarding over 15.4 million tons of textiles each year, the U.S. recycles less than 15%, sending the remainder to landfills and incinerators. Textile reuse is not sufficient to de-escalate the situation; recycling is necessary. Most textile recycling technologies from past decades are expensive, create low quality outputs, or are not industry scalable. For viability, textile recycling system designs must evolve with the rapid pace of a dynamic textile and fashion industry. For any design to be sustainable, it must also be flexible to adapt with technological, user, societal, and environmental condition advances. To this end flexible and sustainable design principles were compared: overlapping principles were combined and missing principles were added to create twelve overarching sustainable, flexible design principles (DfSFlex). The Fiber Shredder was designed and built with flexibility and sustainability as its goal and evaluated on how well it met DfSFlex principles. An evaluation of the Fiber Shredder's performance found that increased speed and processing time increases the generation of the desired output - fibers and yarns, manifesting the principles of Design for Separation in design and Facilitate Resource Recovery in processing. The development of this technology, with the application of sustainable and flexible design, fiber-to-fiber recycling using mechanical systems appears promising for maintaining value while repurposing textiles.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":\"48 3\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063993\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063993","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Combining Flexible and Sustainable Design Principles for Evaluating Designs: Textile Recycling Application
Abstract As rates of textile manufacturing and disposal escalate, the ramifications to health and the environment through water pollution, microplastic contaminant concentrations, and greenhouse gas emissions increases. Discarding over 15.4 million tons of textiles each year, the U.S. recycles less than 15%, sending the remainder to landfills and incinerators. Textile reuse is not sufficient to de-escalate the situation; recycling is necessary. Most textile recycling technologies from past decades are expensive, create low quality outputs, or are not industry scalable. For viability, textile recycling system designs must evolve with the rapid pace of a dynamic textile and fashion industry. For any design to be sustainable, it must also be flexible to adapt with technological, user, societal, and environmental condition advances. To this end flexible and sustainable design principles were compared: overlapping principles were combined and missing principles were added to create twelve overarching sustainable, flexible design principles (DfSFlex). The Fiber Shredder was designed and built with flexibility and sustainability as its goal and evaluated on how well it met DfSFlex principles. An evaluation of the Fiber Shredder's performance found that increased speed and processing time increases the generation of the desired output - fibers and yarns, manifesting the principles of Design for Separation in design and Facilitate Resource Recovery in processing. The development of this technology, with the application of sustainable and flexible design, fiber-to-fiber recycling using mechanical systems appears promising for maintaining value while repurposing textiles.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining