用神经网络方法估算东北太平洋海洋碳吸收

IF 3.9 2区 地球科学 Q1 ECOLOGY Biogeosciences Pub Date : 2023-09-27 DOI:10.5194/bg-20-3919-2023
Patrick J. Duke, Roberta C. Hamme, Debby Ianson, Peter Landschützer, Mohamed M. M. Ahmed, Neil C. Swart, Paul A. Covert
{"title":"用神经网络方法估算东北太平洋海洋碳吸收","authors":"Patrick J. Duke, Roberta C. Hamme, Debby Ianson, Peter Landschützer, Mohamed M. M. Ahmed, Neil C. Swart, Paul A. Covert","doi":"10.5194/bg-20-3919-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The global ocean takes up nearly a quarter of anthropogenic CO2 emissions annually, but the variability in this uptake at regional scales remains poorly understood. Here we use a neural network approach to interpolate sparse observations, creating a monthly gridded seawater partial pressure of CO2 (pCO2) data product from January 1998 to December 2019, at 1/12∘ × 1/12∘ spatial resolution, in the northeast Pacific open ocean, a net sink region. The data product (ANN-NEP; NCEI Accession 0277836) was created from pCO2 observations within the 2021 version of the Surface Ocean CO2 Atlas (SOCAT) and a range of predictor variables acting as proxies for processes affecting pCO2 to create nonlinear relationships to interpolate observations at a spatial resolution 4 times greater than leading global products and with better overall performance. In moving to a higher resolution, we show that the internal division of training data is the most important parameter for reducing overfitting. Using our pCO2 product, wind speed, and atmospheric CO2, we evaluate air–sea CO2 flux variability. On sub-decadal to decadal timescales, we find that the upwelling strength of the subpolar Alaskan Gyre, driven by large-scale atmospheric forcing, acts as the primary control on air–sea CO2 flux variability (r2=0.93, p<0.01). In the northern part of our study region, divergence from atmospheric CO2 is enhanced by increased local wind stress curl, enhancing upwelling and entrainment of naturally CO2-rich subsurface waters, leading to decade-long intervals of strong winter outgassing. During recent Pacific marine heat waves from 2013 on, we find enhanced atmospheric CO2 uptake (by as much as 45 %) due to limited wintertime entrainment. Our product estimates long-term surface ocean pCO2 increase at a rate below the atmospheric trend (1.4 ± 0.1 µatm yr−1) with the slowest increase in the center of the subpolar gyre where there is strong interaction with subsurface waters. This mismatch suggests the northeast Pacific Ocean sink for atmospheric CO2 may be increasing.","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"2010 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating marine carbon uptake in the northeast Pacific using a neural network approach\",\"authors\":\"Patrick J. Duke, Roberta C. Hamme, Debby Ianson, Peter Landschützer, Mohamed M. M. Ahmed, Neil C. Swart, Paul A. Covert\",\"doi\":\"10.5194/bg-20-3919-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The global ocean takes up nearly a quarter of anthropogenic CO2 emissions annually, but the variability in this uptake at regional scales remains poorly understood. Here we use a neural network approach to interpolate sparse observations, creating a monthly gridded seawater partial pressure of CO2 (pCO2) data product from January 1998 to December 2019, at 1/12∘ × 1/12∘ spatial resolution, in the northeast Pacific open ocean, a net sink region. The data product (ANN-NEP; NCEI Accession 0277836) was created from pCO2 observations within the 2021 version of the Surface Ocean CO2 Atlas (SOCAT) and a range of predictor variables acting as proxies for processes affecting pCO2 to create nonlinear relationships to interpolate observations at a spatial resolution 4 times greater than leading global products and with better overall performance. In moving to a higher resolution, we show that the internal division of training data is the most important parameter for reducing overfitting. Using our pCO2 product, wind speed, and atmospheric CO2, we evaluate air–sea CO2 flux variability. On sub-decadal to decadal timescales, we find that the upwelling strength of the subpolar Alaskan Gyre, driven by large-scale atmospheric forcing, acts as the primary control on air–sea CO2 flux variability (r2=0.93, p<0.01). In the northern part of our study region, divergence from atmospheric CO2 is enhanced by increased local wind stress curl, enhancing upwelling and entrainment of naturally CO2-rich subsurface waters, leading to decade-long intervals of strong winter outgassing. During recent Pacific marine heat waves from 2013 on, we find enhanced atmospheric CO2 uptake (by as much as 45 %) due to limited wintertime entrainment. Our product estimates long-term surface ocean pCO2 increase at a rate below the atmospheric trend (1.4 ± 0.1 µatm yr−1) with the slowest increase in the center of the subpolar gyre where there is strong interaction with subsurface waters. This mismatch suggests the northeast Pacific Ocean sink for atmospheric CO2 may be increasing.\",\"PeriodicalId\":8899,\"journal\":{\"name\":\"Biogeosciences\",\"volume\":\"2010 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/bg-20-3919-2023\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/bg-20-3919-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要全球海洋每年吸收了近四分之一的人为二氧化碳排放,但人们对这种吸收在区域尺度上的变异性仍然知之甚少。在这里,我们使用神经网络方法对稀疏观测数据进行插值,创建了1998年1月至2019年12月在净沉降区东北太平洋公海以1/12°× 1/12°空间分辨率的逐月网格化海水二氧化碳分压(pCO2)数据产品。数据乘积(ANN-NEP;NCEI检索号0277836)是根据2021年版表层海洋CO2图集(SOCAT)中的pCO2观测数据创建的,一系列预测变量作为影响pCO2过程的代理,创建非线性关系,以比全球领先产品高4倍的空间分辨率插值观测数据,并具有更好的整体性能。在向更高分辨率移动时,我们表明训练数据的内部划分是减少过拟合的最重要参数。利用我们的pCO2产品、风速和大气CO2,我们评估了空气-海洋CO2通量的可变性。在次年代际到年代际的时间尺度上,我们发现在大尺度大气强迫的驱动下,近极地阿拉斯加环流的上升流强度是海气CO2通量变率的主要控制因子(r2=0.93, p<0.01)。在研究区北部,局地风应力旋度的增加增强了与大气CO2的辐散,增强了天然富CO2地下水的上升流和夹带,导致冬季强放气间隔长达10年。在2013年以来最近的太平洋海洋热浪中,我们发现由于冬季有限的裹挟,大气中二氧化碳的吸收增加了(高达45%)。我们的产品估计,长期海洋表层二氧化碳分压的增长速度低于大气趋势(1.4±0.1 μ atm yr - 1),在与地下水有强烈相互作用的亚极环流中心增长最慢。这种不匹配表明东北太平洋对大气二氧化碳的吸收可能正在增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating marine carbon uptake in the northeast Pacific using a neural network approach
Abstract. The global ocean takes up nearly a quarter of anthropogenic CO2 emissions annually, but the variability in this uptake at regional scales remains poorly understood. Here we use a neural network approach to interpolate sparse observations, creating a monthly gridded seawater partial pressure of CO2 (pCO2) data product from January 1998 to December 2019, at 1/12∘ × 1/12∘ spatial resolution, in the northeast Pacific open ocean, a net sink region. The data product (ANN-NEP; NCEI Accession 0277836) was created from pCO2 observations within the 2021 version of the Surface Ocean CO2 Atlas (SOCAT) and a range of predictor variables acting as proxies for processes affecting pCO2 to create nonlinear relationships to interpolate observations at a spatial resolution 4 times greater than leading global products and with better overall performance. In moving to a higher resolution, we show that the internal division of training data is the most important parameter for reducing overfitting. Using our pCO2 product, wind speed, and atmospheric CO2, we evaluate air–sea CO2 flux variability. On sub-decadal to decadal timescales, we find that the upwelling strength of the subpolar Alaskan Gyre, driven by large-scale atmospheric forcing, acts as the primary control on air–sea CO2 flux variability (r2=0.93, p<0.01). In the northern part of our study region, divergence from atmospheric CO2 is enhanced by increased local wind stress curl, enhancing upwelling and entrainment of naturally CO2-rich subsurface waters, leading to decade-long intervals of strong winter outgassing. During recent Pacific marine heat waves from 2013 on, we find enhanced atmospheric CO2 uptake (by as much as 45 %) due to limited wintertime entrainment. Our product estimates long-term surface ocean pCO2 increase at a rate below the atmospheric trend (1.4 ± 0.1 µatm yr−1) with the slowest increase in the center of the subpolar gyre where there is strong interaction with subsurface waters. This mismatch suggests the northeast Pacific Ocean sink for atmospheric CO2 may be increasing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biogeosciences
Biogeosciences 环境科学-地球科学综合
CiteScore
8.60
自引率
8.20%
发文量
258
审稿时长
4.2 months
期刊介绍: Biogeosciences (BG) is an international scientific journal dedicated to the publication and discussion of research articles, short communications and review papers on all aspects of the interactions between the biological, chemical and physical processes in terrestrial or extraterrestrial life with the geosphere, hydrosphere and atmosphere. The objective of the journal is to cut across the boundaries of established sciences and achieve an interdisciplinary view of these interactions. Experimental, conceptual and modelling approaches are welcome.
期刊最新文献
Spatial and seasonal variability in volatile organic sulfur compounds in seawater and the overlying atmosphere of the Bohai and Yellow seas Root distributions predict shrub–steppe responses to precipitation intensity Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America Driving and limiting factors of CH4 and CO2 emissions from coastal brackish-water wetlands in temperate regions Temporary stratification promotes large greenhouse gas emissions in a shallow eutrophic lake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1