{"title":"用光纤布拉格光栅重建非光滑分布和温度的应变","authors":"Małgorzata Detka, Cezary Kaczmarek","doi":"10.24425/ijet.2022.141271","DOIUrl":null,"url":null,"abstract":"— This paper presents a simulation study of the simultaneous reconstruction of the non-smooth strain distribution of an optical fiber Bragg grating and its temperature, which is based on the reflection spectrum of the reflected beam of the grating. The transition matrix method was used to model the reflection spectrum of the grating, and the nonlinear Nelder-Mead optimization method was used to simultaneously reconstruct the strain distribution along the grating and its temperature. The results of simulations of simultaneous reconstruction of the strain profile and temperature indicate good accord with the strain profiles and temperature set. The reconstruction errors of the strain profiles are less than 1.2 percent and the temperature change errors are less than 0.2 percent, with a noise level of 5 percent.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"26 11","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of Strains with a Non-smooth Distribution and Temperature Using Optical Fiber Bragg Grating\",\"authors\":\"Małgorzata Detka, Cezary Kaczmarek\",\"doi\":\"10.24425/ijet.2022.141271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— This paper presents a simulation study of the simultaneous reconstruction of the non-smooth strain distribution of an optical fiber Bragg grating and its temperature, which is based on the reflection spectrum of the reflected beam of the grating. The transition matrix method was used to model the reflection spectrum of the grating, and the nonlinear Nelder-Mead optimization method was used to simultaneously reconstruct the strain distribution along the grating and its temperature. The results of simulations of simultaneous reconstruction of the strain profile and temperature indicate good accord with the strain profiles and temperature set. The reconstruction errors of the strain profiles are less than 1.2 percent and the temperature change errors are less than 0.2 percent, with a noise level of 5 percent.\",\"PeriodicalId\":13922,\"journal\":{\"name\":\"International Journal of Electronics and Telecommunications\",\"volume\":\"26 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronics and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ijet.2022.141271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2022.141271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Reconstruction of Strains with a Non-smooth Distribution and Temperature Using Optical Fiber Bragg Grating
— This paper presents a simulation study of the simultaneous reconstruction of the non-smooth strain distribution of an optical fiber Bragg grating and its temperature, which is based on the reflection spectrum of the reflected beam of the grating. The transition matrix method was used to model the reflection spectrum of the grating, and the nonlinear Nelder-Mead optimization method was used to simultaneously reconstruct the strain distribution along the grating and its temperature. The results of simulations of simultaneous reconstruction of the strain profile and temperature indicate good accord with the strain profiles and temperature set. The reconstruction errors of the strain profiles are less than 1.2 percent and the temperature change errors are less than 0.2 percent, with a noise level of 5 percent.