低功耗器件、近似加法器和近阈值运算在节能乘法器中的应用

Vinicius Zanandrea, Douglas Borges, Vagner Rosa, Cristina Meinhardt
{"title":"低功耗器件、近似加法器和近阈值运算在节能乘法器中的应用","authors":"Vinicius Zanandrea, Douglas Borges, Vagner Rosa, Cristina Meinhardt","doi":"10.29292/jics.v18i2.754","DOIUrl":null,"url":null,"abstract":"With the rising importance of power consumption in battery-powered devices, approximate computing techniques have emerged as a promising approach to strike a balance between exact computation and power savings, leading to improved delays. This paper investigates the combination of near-threshold operation and approximate adders to design power-efficient multipliers. We analyzed four multiplier architectures using 16 nm low-power and high-performance models. At the transistor level, three strategies for approximate full adders are explored, focusing on both partial product reduction and the final addition stage of the multipliers. Eleven test cases are thoroughly evaluated to identify the most suitable approximate circuit, considering the trade-offs among power, performance, and accuracy. The obtained results demonstrate a substantial reduction in power consumption at near-threshold operation. The replacement of exact full adders with the approximate copy strategy in the least significant bits of the multipliers leads to a reduction of up to 34.4% in power consumption and 19.2% in delay. The design-space exploration carried out in this study provides valuable insights for designers to choose the best approximate multiplier based on specific design requirements.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Use of Low-power Devices, Approximate Adders and Near-threshold Operation for Energy-efficient Multipliers\",\"authors\":\"Vinicius Zanandrea, Douglas Borges, Vagner Rosa, Cristina Meinhardt\",\"doi\":\"10.29292/jics.v18i2.754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rising importance of power consumption in battery-powered devices, approximate computing techniques have emerged as a promising approach to strike a balance between exact computation and power savings, leading to improved delays. This paper investigates the combination of near-threshold operation and approximate adders to design power-efficient multipliers. We analyzed four multiplier architectures using 16 nm low-power and high-performance models. At the transistor level, three strategies for approximate full adders are explored, focusing on both partial product reduction and the final addition stage of the multipliers. Eleven test cases are thoroughly evaluated to identify the most suitable approximate circuit, considering the trade-offs among power, performance, and accuracy. The obtained results demonstrate a substantial reduction in power consumption at near-threshold operation. The replacement of exact full adders with the approximate copy strategy in the least significant bits of the multipliers leads to a reduction of up to 34.4% in power consumption and 19.2% in delay. The design-space exploration carried out in this study provides valuable insights for designers to choose the best approximate multiplier based on specific design requirements.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v18i2.754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v18i2.754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

随着电池供电设备中功耗的重要性日益提高,近似计算技术已经成为一种有前途的方法,可以在精确计算和节能之间取得平衡,从而改善延迟。本文研究了结合近阈值运算和近似加法器来设计高能效乘法器。我们使用16纳米低功耗和高性能模型分析了四种乘法器架构。在晶体管层面,探讨了三种近似全加法器的策略,重点关注乘法器的部分积缩减和最终加法阶段。11个测试案例进行了全面评估,以确定最合适的近似电路,考虑功率,性能和精度之间的权衡。所获得的结果表明,在近阈值操作时,功耗大大降低。在乘法器的最低有效位上用近似复制策略替换精确的全加法器,导致功耗降低34.4%,延迟降低19.2%。本研究进行的设计空间探索为设计师根据具体设计需求选择最佳近似乘法器提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Use of Low-power Devices, Approximate Adders and Near-threshold Operation for Energy-efficient Multipliers
With the rising importance of power consumption in battery-powered devices, approximate computing techniques have emerged as a promising approach to strike a balance between exact computation and power savings, leading to improved delays. This paper investigates the combination of near-threshold operation and approximate adders to design power-efficient multipliers. We analyzed four multiplier architectures using 16 nm low-power and high-performance models. At the transistor level, three strategies for approximate full adders are explored, focusing on both partial product reduction and the final addition stage of the multipliers. Eleven test cases are thoroughly evaluated to identify the most suitable approximate circuit, considering the trade-offs among power, performance, and accuracy. The obtained results demonstrate a substantial reduction in power consumption at near-threshold operation. The replacement of exact full adders with the approximate copy strategy in the least significant bits of the multipliers leads to a reduction of up to 34.4% in power consumption and 19.2% in delay. The design-space exploration carried out in this study provides valuable insights for designers to choose the best approximate multiplier based on specific design requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
期刊最新文献
Analysis of biosensing performance of Trench Double Gate Junctionless Field Effect Transistor Alternative approach to design Dibit-based XOR and XNOR gate A Low Power R-peak Detector Clocked at Signal Sampling Rate Impact of the gate work function on the experimental I-V characteristics of MOS solar cells simulated with the Sentaurus TCAD software Design and Performance Assessment of a Label- free Biosensor utilizing a Novel TFET Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1