SiC功率MOSFET模型的参数提取方法

Hicham Er-rafii, Abdelghafour Galadi
{"title":"SiC功率MOSFET模型的参数提取方法","authors":"Hicham Er-rafii, Abdelghafour Galadi","doi":"10.29292/jics.v18i2.756","DOIUrl":null,"url":null,"abstract":"A simple and efficient parameter extraction method for Silicon Carbide (SiC) power MOSFET model is described. This method uses nonlinear optimization algorithm to find the optimal set of parameters to model. The optimizer algorithm starts with initial guess parameters, extracted from measurement, to provide a set of parameters minimizing errors between model and measurements data in entire operating regions of the device. The starting initial guess parameter values give to the algorithm a closed solution to obtain the optimal set of model parameters with reduced iteratives. The Levenberg-Marquardt (LM) algorithm will be used in this work. The efficiency of the proposed extraction method is proved with the good agreements obtained between the model and the measurements.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimal Parameter Extraction Procedure for SiC Power MOSFET Model\",\"authors\":\"Hicham Er-rafii, Abdelghafour Galadi\",\"doi\":\"10.29292/jics.v18i2.756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple and efficient parameter extraction method for Silicon Carbide (SiC) power MOSFET model is described. This method uses nonlinear optimization algorithm to find the optimal set of parameters to model. The optimizer algorithm starts with initial guess parameters, extracted from measurement, to provide a set of parameters minimizing errors between model and measurements data in entire operating regions of the device. The starting initial guess parameter values give to the algorithm a closed solution to obtain the optimal set of model parameters with reduced iteratives. The Levenberg-Marquardt (LM) algorithm will be used in this work. The efficiency of the proposed extraction method is proved with the good agreements obtained between the model and the measurements.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v18i2.756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v18i2.756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种简单有效的碳化硅功率MOSFET模型参数提取方法。该方法采用非线性优化算法寻找最优参数集进行建模。优化器算法从从测量中提取的初始猜测参数开始,提供一组参数,以最大限度地减少设备整个操作区域中模型和测量数据之间的误差。初始猜测参数值为算法提供了一个封闭解,以减少迭代次数获得最优模型参数集。本文将使用Levenberg-Marquardt (LM)算法。模型与实测数据吻合良好,证明了所提提取方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Optimal Parameter Extraction Procedure for SiC Power MOSFET Model
A simple and efficient parameter extraction method for Silicon Carbide (SiC) power MOSFET model is described. This method uses nonlinear optimization algorithm to find the optimal set of parameters to model. The optimizer algorithm starts with initial guess parameters, extracted from measurement, to provide a set of parameters minimizing errors between model and measurements data in entire operating regions of the device. The starting initial guess parameter values give to the algorithm a closed solution to obtain the optimal set of model parameters with reduced iteratives. The Levenberg-Marquardt (LM) algorithm will be used in this work. The efficiency of the proposed extraction method is proved with the good agreements obtained between the model and the measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
期刊最新文献
Analysis of biosensing performance of Trench Double Gate Junctionless Field Effect Transistor Alternative approach to design Dibit-based XOR and XNOR gate A Low Power R-peak Detector Clocked at Signal Sampling Rate Impact of the gate work function on the experimental I-V characteristics of MOS solar cells simulated with the Sentaurus TCAD software Design and Performance Assessment of a Label- free Biosensor utilizing a Novel TFET Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1