SOI晶圆上的锗硅层横向PIN光电二极管

Fabio Silva, Rodrigo Trevisoli Dória, Eddy Simoen, Maria G. C. Andrade
{"title":"SOI晶圆上的锗硅层横向PIN光电二极管","authors":"Fabio Silva, Rodrigo Trevisoli Dória, Eddy Simoen, Maria G. C. Andrade","doi":"10.29292/jics.v18i2.746","DOIUrl":null,"url":null,"abstract":"It has been verified through numerical simulations calibrated to experimental data the changes that the insertion of a germanium layer can bring to the electrical power generation of a silicon solar cell. The insertion of a germanium layer on top or below a silicon PIN diode designed in SOI technology has been considered. Results showed that different semiconductor characteristics (bandgap, mobility, and absorption coefficients) result in a general improvement in the solar cell performance, being able to reach a power 136% greater than the device without the heterogeneous layer. In the evaluated device the average power was improved from 9.43 nW to 14.92 nW with the Ge layer insertion. Besides that, the analysis has allowed for a better understanding of the phenomena that occur in the photogeneration of a cell with a heterojunction between germanium and silicon.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lateral PIN Photodiode with Germanium and Silicon Layer on SOI Wafers\",\"authors\":\"Fabio Silva, Rodrigo Trevisoli Dória, Eddy Simoen, Maria G. C. Andrade\",\"doi\":\"10.29292/jics.v18i2.746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been verified through numerical simulations calibrated to experimental data the changes that the insertion of a germanium layer can bring to the electrical power generation of a silicon solar cell. The insertion of a germanium layer on top or below a silicon PIN diode designed in SOI technology has been considered. Results showed that different semiconductor characteristics (bandgap, mobility, and absorption coefficients) result in a general improvement in the solar cell performance, being able to reach a power 136% greater than the device without the heterogeneous layer. In the evaluated device the average power was improved from 9.43 nW to 14.92 nW with the Ge layer insertion. Besides that, the analysis has allowed for a better understanding of the phenomena that occur in the photogeneration of a cell with a heterojunction between germanium and silicon.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v18i2.746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v18i2.746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

通过与实验数据校准的数值模拟,验证了锗层的插入对硅太阳能电池发电的影响。考虑了在SOI技术中设计的硅PIN二极管的顶部或下方插入锗层。结果表明,不同的半导体特性(带隙,迁移率和吸收系数)导致太阳能电池性能的总体改善,能够达到比没有异质层的设备高136%的功率。在所评价的器件中,随着Ge层的插入,平均功率从9.43 nW提高到14.92 nW。除此之外,该分析还允许更好地理解在锗和硅之间具有异质结的电池的光产生中发生的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lateral PIN Photodiode with Germanium and Silicon Layer on SOI Wafers
It has been verified through numerical simulations calibrated to experimental data the changes that the insertion of a germanium layer can bring to the electrical power generation of a silicon solar cell. The insertion of a germanium layer on top or below a silicon PIN diode designed in SOI technology has been considered. Results showed that different semiconductor characteristics (bandgap, mobility, and absorption coefficients) result in a general improvement in the solar cell performance, being able to reach a power 136% greater than the device without the heterogeneous layer. In the evaluated device the average power was improved from 9.43 nW to 14.92 nW with the Ge layer insertion. Besides that, the analysis has allowed for a better understanding of the phenomena that occur in the photogeneration of a cell with a heterojunction between germanium and silicon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
期刊最新文献
Analysis of biosensing performance of Trench Double Gate Junctionless Field Effect Transistor Alternative approach to design Dibit-based XOR and XNOR gate A Low Power R-peak Detector Clocked at Signal Sampling Rate Impact of the gate work function on the experimental I-V characteristics of MOS solar cells simulated with the Sentaurus TCAD software Design and Performance Assessment of a Label- free Biosensor utilizing a Novel TFET Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1