热涡多射流系统冲击平板的热动力学特性的实验与数值研究

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of Mechanical Engineering and Sciences Pub Date : 2023-09-27 DOI:10.15282/jmes.17.3.2023.8.0762
None A. Zerrout, None L. Loukarfi
{"title":"热涡多射流系统冲击平板的热动力学特性的实验与数值研究","authors":"None A. Zerrout, None L. Loukarfi","doi":"10.15282/jmes.17.3.2023.8.0762","DOIUrl":null,"url":null,"abstract":"This study concerns the experimental and numerical study of the thermal and dynamic behavior of a configuration of a system of vortex jets impacting a flat plate, The objective of this study is to study the behavior of the thermal and dynamic field of vortex blowing of hot air from a multi-jet system impacting a flat plate. The experimental test bench comprising a support of three diffusers of diameter D, impacting the perpendicular plate. A uniform inlet temperature (T, T, T) is imposed such that the impact height H = 4D. The vortex is obtained by a vortex generator made up of 12 fins arranged at 60° from the vertical, placed just at the outlet of the diffuser. A thermo-anemometer device, to measure the blowing temperature at the point in question. The system was numerically simulated by the fluent code using a k-ε RNG turbulence model. It should be noted that the multi-jet system first appears as a free jet: going from the injection orifice to the impact zone, the axial velocity weakens, the jet undergoes considerable deflection, this is the deflection zone the velocities become mainly radial and the thickness of the boundary layer increases radially: this is the parietal flow zone, the structure of the velocity field has two zones of intense deflection with a wall jet on both sides other, favoring a good development of the resulting jet. The results show that this configuration (T, T, T) gave a better optimized distribution of temperature and velocity on the surface of the plate. This homogenization of the temperatures results from a better thermal transfer of the plate.The k-ε RNG model gave acceptable results, which coincide with those of the experimental results.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"69 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical investigation of the thermal and dynamic behavior of a heated vortex multijet system impacting a flat plate\",\"authors\":\"None A. Zerrout, None L. Loukarfi\",\"doi\":\"10.15282/jmes.17.3.2023.8.0762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study concerns the experimental and numerical study of the thermal and dynamic behavior of a configuration of a system of vortex jets impacting a flat plate, The objective of this study is to study the behavior of the thermal and dynamic field of vortex blowing of hot air from a multi-jet system impacting a flat plate. The experimental test bench comprising a support of three diffusers of diameter D, impacting the perpendicular plate. A uniform inlet temperature (T, T, T) is imposed such that the impact height H = 4D. The vortex is obtained by a vortex generator made up of 12 fins arranged at 60° from the vertical, placed just at the outlet of the diffuser. A thermo-anemometer device, to measure the blowing temperature at the point in question. The system was numerically simulated by the fluent code using a k-ε RNG turbulence model. It should be noted that the multi-jet system first appears as a free jet: going from the injection orifice to the impact zone, the axial velocity weakens, the jet undergoes considerable deflection, this is the deflection zone the velocities become mainly radial and the thickness of the boundary layer increases radially: this is the parietal flow zone, the structure of the velocity field has two zones of intense deflection with a wall jet on both sides other, favoring a good development of the resulting jet. The results show that this configuration (T, T, T) gave a better optimized distribution of temperature and velocity on the surface of the plate. This homogenization of the temperatures results from a better thermal transfer of the plate.The k-ε RNG model gave acceptable results, which coincide with those of the experimental results.\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/jmes.17.3.2023.8.0762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.3.2023.8.0762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究是对一组旋涡射流冲击平板系统的热动力特性进行实验和数值研究,目的是研究多射流系统中热空气的涡吹冲击平板的热动力场特性。实验试验台由三个直径为D的扩散器组成,冲击垂直板。施加均匀的入口温度(T, T, T)使冲击高度H = 4D。旋涡是由一个由12片与垂直方向成60°的鳍片组成的旋涡发生器产生的,它被放置在扩散器的出口。一个热风速计装置,用于测量所讨论点的吹风温度。采用k-ε RNG湍流模型,利用fluent软件对系统进行了数值模拟。需要注意的是,多射流系统首先以自由射流的形式出现:从注射孔到冲击区,轴向速度减弱,射流发生较大的偏转,在偏转区,速度以径向为主,边界层厚度呈径向增加;这是顶流区,速度场的结构有两个强烈的偏转区,两侧有壁面射流,有利于形成的射流的良好发展。结果表明,这种构型(T, T, T)能较好地优化板表面的温度和速度分布。这种温度的均匀化是由于板的热传递更好。k-ε RNG模型的计算结果与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and numerical investigation of the thermal and dynamic behavior of a heated vortex multijet system impacting a flat plate
This study concerns the experimental and numerical study of the thermal and dynamic behavior of a configuration of a system of vortex jets impacting a flat plate, The objective of this study is to study the behavior of the thermal and dynamic field of vortex blowing of hot air from a multi-jet system impacting a flat plate. The experimental test bench comprising a support of three diffusers of diameter D, impacting the perpendicular plate. A uniform inlet temperature (T, T, T) is imposed such that the impact height H = 4D. The vortex is obtained by a vortex generator made up of 12 fins arranged at 60° from the vertical, placed just at the outlet of the diffuser. A thermo-anemometer device, to measure the blowing temperature at the point in question. The system was numerically simulated by the fluent code using a k-ε RNG turbulence model. It should be noted that the multi-jet system first appears as a free jet: going from the injection orifice to the impact zone, the axial velocity weakens, the jet undergoes considerable deflection, this is the deflection zone the velocities become mainly radial and the thickness of the boundary layer increases radially: this is the parietal flow zone, the structure of the velocity field has two zones of intense deflection with a wall jet on both sides other, favoring a good development of the resulting jet. The results show that this configuration (T, T, T) gave a better optimized distribution of temperature and velocity on the surface of the plate. This homogenization of the temperatures results from a better thermal transfer of the plate.The k-ε RNG model gave acceptable results, which coincide with those of the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
期刊最新文献
Experimental investigation on the effect of process variables for the quality characteristics of AA 2024 processed in cold extrusion Detailed performance analysis of parabolic trough collectors including geometric effect Influence of tool pin profile on the mechanical strength and surface roughness of AA6061-T6 overlap joint friction stir welding Crowd counting algorithm based on face detection and skin color recognition Vibrations control of railway vehicles using decentralized proportional integral derivative controller with flow direction optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1