{"title":"采用主动控制和机器学习策略的扭转振动缓解技术综述","authors":"","doi":"10.1016/j.petlm.2023.09.007","DOIUrl":null,"url":null,"abstract":"<div><p>Drilling is one of the most challenging and expensive processes in hydrocarbon extraction and geothermal well development. Dysfunctions faced during drilling can increase the non-productive time (NPT) greatly, resulting in inflating the drilling cost and also pose a safety concern. One of the main problems faced during drilling that limits the life of drilling equipment and tools and decreases the overall productivity of the system is drilling vibrations. These vibrations can be categorized into three modes: axial, lateral, and torsional. Stick-slip vibrations are a type of torsional vibration in which the bottom hole assembly (BHA) periodically stops to rotate followed by a spike in the bottom hole RPM. This paper provides a comprehensive review of techniques used to control and mitigate torsional vibration with an emphasis on stick-slip. A brief introduction to drillstring and friction modeling is presented followed by a concise summary of passive control techniques to control stick-slip. Then the focus is shifted to an up-to-date review of active control and machine learning for stick-slip control and mitigation. The paper ultimately highlights the importance of adapting novel control and mitigation concepts to improve stick slip detection and improve the overall drilling process. A unique solution is insufficient to control a complex process such as drilling, but integration of various techniques has been found promising.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 3","pages":"Pages 411-426"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000652/pdfft?md5=ea210001fd190b4b16a114a2751e3c74&pid=1-s2.0-S2405656123000652-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A review of torsional vibration mitigation techniques using active control and machine learning strategies\",\"authors\":\"\",\"doi\":\"10.1016/j.petlm.2023.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Drilling is one of the most challenging and expensive processes in hydrocarbon extraction and geothermal well development. Dysfunctions faced during drilling can increase the non-productive time (NPT) greatly, resulting in inflating the drilling cost and also pose a safety concern. One of the main problems faced during drilling that limits the life of drilling equipment and tools and decreases the overall productivity of the system is drilling vibrations. These vibrations can be categorized into three modes: axial, lateral, and torsional. Stick-slip vibrations are a type of torsional vibration in which the bottom hole assembly (BHA) periodically stops to rotate followed by a spike in the bottom hole RPM. This paper provides a comprehensive review of techniques used to control and mitigate torsional vibration with an emphasis on stick-slip. A brief introduction to drillstring and friction modeling is presented followed by a concise summary of passive control techniques to control stick-slip. Then the focus is shifted to an up-to-date review of active control and machine learning for stick-slip control and mitigation. The paper ultimately highlights the importance of adapting novel control and mitigation concepts to improve stick slip detection and improve the overall drilling process. A unique solution is insufficient to control a complex process such as drilling, but integration of various techniques has been found promising.</p></div>\",\"PeriodicalId\":37433,\"journal\":{\"name\":\"Petroleum\",\"volume\":\"10 3\",\"pages\":\"Pages 411-426\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405656123000652/pdfft?md5=ea210001fd190b4b16a114a2751e3c74&pid=1-s2.0-S2405656123000652-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405656123000652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656123000652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A review of torsional vibration mitigation techniques using active control and machine learning strategies
Drilling is one of the most challenging and expensive processes in hydrocarbon extraction and geothermal well development. Dysfunctions faced during drilling can increase the non-productive time (NPT) greatly, resulting in inflating the drilling cost and also pose a safety concern. One of the main problems faced during drilling that limits the life of drilling equipment and tools and decreases the overall productivity of the system is drilling vibrations. These vibrations can be categorized into three modes: axial, lateral, and torsional. Stick-slip vibrations are a type of torsional vibration in which the bottom hole assembly (BHA) periodically stops to rotate followed by a spike in the bottom hole RPM. This paper provides a comprehensive review of techniques used to control and mitigate torsional vibration with an emphasis on stick-slip. A brief introduction to drillstring and friction modeling is presented followed by a concise summary of passive control techniques to control stick-slip. Then the focus is shifted to an up-to-date review of active control and machine learning for stick-slip control and mitigation. The paper ultimately highlights the importance of adapting novel control and mitigation concepts to improve stick slip detection and improve the overall drilling process. A unique solution is insufficient to control a complex process such as drilling, but integration of various techniques has been found promising.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing