{"title":"丙烷直接脱氢与co2氧化脱氢的比较","authors":"Yong Yuan, William N. Porter, Jingguang G. Chen","doi":"10.1016/j.trechm.2023.09.001","DOIUrl":null,"url":null,"abstract":"Propane dehydrogenation to propylene has received increasing attention due to the fast growth in propylene demand and the exploration of shale gas containing propane. Direct dehydrogenation of propane (DDHP) offers high propylene selectivity but is limited by quick deactivation due to coke formation. CO2-assisted oxidative dehydrogenation of propane (CO2-ODHP) can consume CO2 and meanwhile reduce coke deposition via the reverse Boudouard reaction. In the current review, direct and CO2-assisted dehydrogenation of propane has been compared from three aspects: reaction mechanisms, catalyst compositions, and CO2 footprint analysis. As the average CO2 emissions from electricity generation decrease due to the utilization of renewable energy, CO2-ODHP potentially leads to a net-negative CO2 footprint while DDHP cannot.","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":"70 1","pages":"0"},"PeriodicalIF":14.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of direct and CO2-oxidative dehydrogenation of propane\",\"authors\":\"Yong Yuan, William N. Porter, Jingguang G. Chen\",\"doi\":\"10.1016/j.trechm.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Propane dehydrogenation to propylene has received increasing attention due to the fast growth in propylene demand and the exploration of shale gas containing propane. Direct dehydrogenation of propane (DDHP) offers high propylene selectivity but is limited by quick deactivation due to coke formation. CO2-assisted oxidative dehydrogenation of propane (CO2-ODHP) can consume CO2 and meanwhile reduce coke deposition via the reverse Boudouard reaction. In the current review, direct and CO2-assisted dehydrogenation of propane has been compared from three aspects: reaction mechanisms, catalyst compositions, and CO2 footprint analysis. As the average CO2 emissions from electricity generation decrease due to the utilization of renewable energy, CO2-ODHP potentially leads to a net-negative CO2 footprint while DDHP cannot.\",\"PeriodicalId\":48544,\"journal\":{\"name\":\"Trends in Chemistry\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.trechm.2023.09.001\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.trechm.2023.09.001","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparison of direct and CO2-oxidative dehydrogenation of propane
Propane dehydrogenation to propylene has received increasing attention due to the fast growth in propylene demand and the exploration of shale gas containing propane. Direct dehydrogenation of propane (DDHP) offers high propylene selectivity but is limited by quick deactivation due to coke formation. CO2-assisted oxidative dehydrogenation of propane (CO2-ODHP) can consume CO2 and meanwhile reduce coke deposition via the reverse Boudouard reaction. In the current review, direct and CO2-assisted dehydrogenation of propane has been compared from three aspects: reaction mechanisms, catalyst compositions, and CO2 footprint analysis. As the average CO2 emissions from electricity generation decrease due to the utilization of renewable energy, CO2-ODHP potentially leads to a net-negative CO2 footprint while DDHP cannot.
期刊介绍:
Trends in Chemistry serves as a new global platform for discussing significant and transformative concepts across all areas of chemistry. It recognizes that breakthroughs in chemistry hold the key to addressing major global challenges. The journal offers readable, multidisciplinary articles, including reviews, opinions, and short pieces, designed to keep both students and leading scientists updated on pressing issues in the field.
Covering analytical, inorganic, organic, physical, and theoretical chemistry, the journal highlights major themes such as biochemistry, catalysis, environmental chemistry, materials, medicine, polymers, and supramolecular chemistry. It also welcomes articles on chemical education, health and safety, policy and public relations, and ethics and law.