{"title":"基于改进GOMP稀疏信道估计的车对车通信","authors":"Xin Chen, Xudong Zhang, Yaolin Zhu, Ruiqing Ma","doi":"10.1155/2023/5281547","DOIUrl":null,"url":null,"abstract":"Reliable channel estimation is critical for wireless communication performance, especially in vehicle-to-vehicle (V2V) communication scenarios. Aiming at the major challenges of channel tracking and estimating as the highly dynamic nature of vehicle environments, an improved generalized orthogonal matching pursuit (iGOMP) is proposed for V2V channel estimation. The iGOMP algorithm transforms the channel estimation problem into a sparse signal recovery problem and replaces the classical inner product criterion with the Dice atom matching criterion. Additionally, the atomic weak progressive selection method is integrated to avoid the suboptimal selection of atoms from the redundant dictionary using the inner product criterion. The proposed iGOMP method can achieve optimal channel estimation by iterating feedback results. Simulation results demonstrate that the iGOMP method has superior estimation accuracy, mean square error (MSE), and bit error rate (BER) performance compared with traditional channel estimation methods in V2V communications.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":"31 6","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved GOMP Sparse Channel Estimation for Vehicle-to-Vehicle Communications\",\"authors\":\"Xin Chen, Xudong Zhang, Yaolin Zhu, Ruiqing Ma\",\"doi\":\"10.1155/2023/5281547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable channel estimation is critical for wireless communication performance, especially in vehicle-to-vehicle (V2V) communication scenarios. Aiming at the major challenges of channel tracking and estimating as the highly dynamic nature of vehicle environments, an improved generalized orthogonal matching pursuit (iGOMP) is proposed for V2V channel estimation. The iGOMP algorithm transforms the channel estimation problem into a sparse signal recovery problem and replaces the classical inner product criterion with the Dice atom matching criterion. Additionally, the atomic weak progressive selection method is integrated to avoid the suboptimal selection of atoms from the redundant dictionary using the inner product criterion. The proposed iGOMP method can achieve optimal channel estimation by iterating feedback results. Simulation results demonstrate that the iGOMP method has superior estimation accuracy, mean square error (MSE), and bit error rate (BER) performance compared with traditional channel estimation methods in V2V communications.\",\"PeriodicalId\":54392,\"journal\":{\"name\":\"International Journal of Antennas and Propagation\",\"volume\":\"31 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5281547\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5281547","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Improved GOMP Sparse Channel Estimation for Vehicle-to-Vehicle Communications
Reliable channel estimation is critical for wireless communication performance, especially in vehicle-to-vehicle (V2V) communication scenarios. Aiming at the major challenges of channel tracking and estimating as the highly dynamic nature of vehicle environments, an improved generalized orthogonal matching pursuit (iGOMP) is proposed for V2V channel estimation. The iGOMP algorithm transforms the channel estimation problem into a sparse signal recovery problem and replaces the classical inner product criterion with the Dice atom matching criterion. Additionally, the atomic weak progressive selection method is integrated to avoid the suboptimal selection of atoms from the redundant dictionary using the inner product criterion. The proposed iGOMP method can achieve optimal channel estimation by iterating feedback results. Simulation results demonstrate that the iGOMP method has superior estimation accuracy, mean square error (MSE), and bit error rate (BER) performance compared with traditional channel estimation methods in V2V communications.
期刊介绍:
International Journal of Antennas and Propagation publishes papers on the design, analysis, and applications of antennas, along with theoretical and practical studies relating the propagation of electromagnetic waves at all relevant frequencies, through space, air, and other media.
As well as original research, the International Journal of Antennas and Propagation also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.