Sultan Alghamdi, Mohammed Alqarni, Muhammad R. Hammad, Kareem M. AboRas
{"title":"基于FLC和TFOIDFF控制器优化组合的首个频率增强方法在电动汽车、中小企业和upfc集成智能电网上的评估","authors":"Sultan Alghamdi, Mohammed Alqarni, Muhammad R. Hammad, Kareem M. AboRas","doi":"10.3390/fractalfract7110807","DOIUrl":null,"url":null,"abstract":"The most recent advancements in renewable energy resources, as well as their broad acceptance in power sectors, have created substantial operational, security, and management concerns. As a result of the continual decrease in power system inertia, it is critical to maintain the normal operating frequency and reduce tie-line power changes. The preceding issues sparked this research, which proposes the Fuzzy Tilted Fractional Order Integral Derivative with Fractional Filter (FTFOIDFF), a unique load frequency controller. The FTFOIDFF controller described here combines the benefits of tilt, fuzzy logic, FOPID, and fractional filter controllers. Furthermore, the prairie dog optimizer (PDO), a newly developed metaheuristic optimization approach, is shown to efficiently tune the suggested controller settings as well as the forms of the fuzzy logic membership functions in the two-area hybrid power grid investigated in this paper. When the PDO results are compared to those of the Seagull Optimization Algorithm, the Runge Kutta optimizer, and the Chaos Game Optimizer for the same hybrid power system, PDO prevails. The system model incorporates physical constraints such as communication time delays and generation rate constraints. In addition, a unified power flow controller (UPFC) is put in the tie-line, and SMES units have been planned in both regions. Furthermore, the contribution of electric vehicles (EVs) is considered in both sections. The proposed PDO-based FTFOIDFF controller outperformed many PDO-based traditional (such as proportional integral derivative (PID), proportional integral derivative acceleration (PIDA), and TFOIDFF) and intelligent (such as Fuzzy PID and Fuzzy PIDA) controllers from the literature. The suggested PDO-based FTFOIDFF controller has excellent performance due to the usage of various load patterns such as step load perturbation, multi-step load perturbation, random load perturbation, random sinusoidal load perturbation, and pulse load perturbation. Furthermore, a variety of scenarios have been implemented to demonstrate the advantageous effects that SMES, UPFC, and EV units have on the overall performance of the system. The sensitivity of a system is ascertained by modifying its parameters from their standard configurations. According to the simulation results, the suggested PDO-based FTFOIDFF controller can improve system stability despite the multiple difficult conditions indicated previously. According to the MATLAB/Simulink data, the proposed method decreased the total fitness function to 0.0875, representing a 97.35% improvement over PID, 95.84% improvement over PIDA, 92.45% improvement over TFOIDFF, 83.43% improvement over Fuzzy PID, and 37.9% improvement over Fuzzy PIDA.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"8 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-of-Its-Kind Frequency Enhancement Methodology Based on an Optimized Combination of FLC and TFOIDFF Controllers Evaluated on EVs, SMES, and UPFC-Integrated Smart Grid\",\"authors\":\"Sultan Alghamdi, Mohammed Alqarni, Muhammad R. Hammad, Kareem M. AboRas\",\"doi\":\"10.3390/fractalfract7110807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most recent advancements in renewable energy resources, as well as their broad acceptance in power sectors, have created substantial operational, security, and management concerns. As a result of the continual decrease in power system inertia, it is critical to maintain the normal operating frequency and reduce tie-line power changes. The preceding issues sparked this research, which proposes the Fuzzy Tilted Fractional Order Integral Derivative with Fractional Filter (FTFOIDFF), a unique load frequency controller. The FTFOIDFF controller described here combines the benefits of tilt, fuzzy logic, FOPID, and fractional filter controllers. Furthermore, the prairie dog optimizer (PDO), a newly developed metaheuristic optimization approach, is shown to efficiently tune the suggested controller settings as well as the forms of the fuzzy logic membership functions in the two-area hybrid power grid investigated in this paper. When the PDO results are compared to those of the Seagull Optimization Algorithm, the Runge Kutta optimizer, and the Chaos Game Optimizer for the same hybrid power system, PDO prevails. The system model incorporates physical constraints such as communication time delays and generation rate constraints. In addition, a unified power flow controller (UPFC) is put in the tie-line, and SMES units have been planned in both regions. Furthermore, the contribution of electric vehicles (EVs) is considered in both sections. The proposed PDO-based FTFOIDFF controller outperformed many PDO-based traditional (such as proportional integral derivative (PID), proportional integral derivative acceleration (PIDA), and TFOIDFF) and intelligent (such as Fuzzy PID and Fuzzy PIDA) controllers from the literature. The suggested PDO-based FTFOIDFF controller has excellent performance due to the usage of various load patterns such as step load perturbation, multi-step load perturbation, random load perturbation, random sinusoidal load perturbation, and pulse load perturbation. Furthermore, a variety of scenarios have been implemented to demonstrate the advantageous effects that SMES, UPFC, and EV units have on the overall performance of the system. The sensitivity of a system is ascertained by modifying its parameters from their standard configurations. According to the simulation results, the suggested PDO-based FTFOIDFF controller can improve system stability despite the multiple difficult conditions indicated previously. According to the MATLAB/Simulink data, the proposed method decreased the total fitness function to 0.0875, representing a 97.35% improvement over PID, 95.84% improvement over PIDA, 92.45% improvement over TFOIDFF, 83.43% improvement over Fuzzy PID, and 37.9% improvement over Fuzzy PIDA.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7110807\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110807","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
First-of-Its-Kind Frequency Enhancement Methodology Based on an Optimized Combination of FLC and TFOIDFF Controllers Evaluated on EVs, SMES, and UPFC-Integrated Smart Grid
The most recent advancements in renewable energy resources, as well as their broad acceptance in power sectors, have created substantial operational, security, and management concerns. As a result of the continual decrease in power system inertia, it is critical to maintain the normal operating frequency and reduce tie-line power changes. The preceding issues sparked this research, which proposes the Fuzzy Tilted Fractional Order Integral Derivative with Fractional Filter (FTFOIDFF), a unique load frequency controller. The FTFOIDFF controller described here combines the benefits of tilt, fuzzy logic, FOPID, and fractional filter controllers. Furthermore, the prairie dog optimizer (PDO), a newly developed metaheuristic optimization approach, is shown to efficiently tune the suggested controller settings as well as the forms of the fuzzy logic membership functions in the two-area hybrid power grid investigated in this paper. When the PDO results are compared to those of the Seagull Optimization Algorithm, the Runge Kutta optimizer, and the Chaos Game Optimizer for the same hybrid power system, PDO prevails. The system model incorporates physical constraints such as communication time delays and generation rate constraints. In addition, a unified power flow controller (UPFC) is put in the tie-line, and SMES units have been planned in both regions. Furthermore, the contribution of electric vehicles (EVs) is considered in both sections. The proposed PDO-based FTFOIDFF controller outperformed many PDO-based traditional (such as proportional integral derivative (PID), proportional integral derivative acceleration (PIDA), and TFOIDFF) and intelligent (such as Fuzzy PID and Fuzzy PIDA) controllers from the literature. The suggested PDO-based FTFOIDFF controller has excellent performance due to the usage of various load patterns such as step load perturbation, multi-step load perturbation, random load perturbation, random sinusoidal load perturbation, and pulse load perturbation. Furthermore, a variety of scenarios have been implemented to demonstrate the advantageous effects that SMES, UPFC, and EV units have on the overall performance of the system. The sensitivity of a system is ascertained by modifying its parameters from their standard configurations. According to the simulation results, the suggested PDO-based FTFOIDFF controller can improve system stability despite the multiple difficult conditions indicated previously. According to the MATLAB/Simulink data, the proposed method decreased the total fitness function to 0.0875, representing a 97.35% improvement over PID, 95.84% improvement over PIDA, 92.45% improvement over TFOIDFF, 83.43% improvement over Fuzzy PID, and 37.9% improvement over Fuzzy PIDA.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.