焦耳加热催化反应器实现脱碳和工艺强化:综述

IF 4.3 Q2 ENGINEERING, CHEMICAL ACS Engineering Au Pub Date : 2023-11-06 DOI:10.1021/acsengineeringau.3c00045
Lei Zheng, Matteo Ambrosetti and Enrico Tronconi*, 
{"title":"焦耳加热催化反应器实现脱碳和工艺强化:综述","authors":"Lei Zheng,&nbsp;Matteo Ambrosetti and Enrico Tronconi*,&nbsp;","doi":"10.1021/acsengineeringau.3c00045","DOIUrl":null,"url":null,"abstract":"<p >The supply of the heat required for chemical processes via renewable electricity, i.e., process electrification, provides an alternative strategy for replacing conventional fossil fuel combustion. This approach enables fast, selective, and uniform heating, offers great potential for utilizing the excess renewable electric energy, and brings about an important chance for mitigating CO<sub>2</sub> emissions. In this work, we provide an overview of the state-of-the-art electricity-to-heat driven catalytic processes. The principle and fundamentals of Joule heating are provided and briefly compared to induction and microwave heating in view of electrifying catalytic processes. By this comparison, we assess that Joule heating can be regarded as the most promising method for process electrification, and its applications to methane reforming, cracking reactions, CO<sub>2</sub> valorization, and transient process operation are then reviewed. Advantages and disadvantages are critically addressed in terms of efficiency, potential for scale-up and possibility of retrofitting. The current challenges in the development of advanced electrified processes as well as the opportunities of next generation electrification techniques are discussed.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00045","citationCount":"0","resultStr":"{\"title\":\"Joule-Heated Catalytic Reactors toward Decarbonization and Process Intensification: A Review\",\"authors\":\"Lei Zheng,&nbsp;Matteo Ambrosetti and Enrico Tronconi*,&nbsp;\",\"doi\":\"10.1021/acsengineeringau.3c00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The supply of the heat required for chemical processes via renewable electricity, i.e., process electrification, provides an alternative strategy for replacing conventional fossil fuel combustion. This approach enables fast, selective, and uniform heating, offers great potential for utilizing the excess renewable electric energy, and brings about an important chance for mitigating CO<sub>2</sub> emissions. In this work, we provide an overview of the state-of-the-art electricity-to-heat driven catalytic processes. The principle and fundamentals of Joule heating are provided and briefly compared to induction and microwave heating in view of electrifying catalytic processes. By this comparison, we assess that Joule heating can be regarded as the most promising method for process electrification, and its applications to methane reforming, cracking reactions, CO<sub>2</sub> valorization, and transient process operation are then reviewed. Advantages and disadvantages are critically addressed in terms of efficiency, potential for scale-up and possibility of retrofitting. The current challenges in the development of advanced electrified processes as well as the opportunities of next generation electrification techniques are discussed.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00045\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过可再生电力供应化学工艺所需的热量,即工艺电气化,为替代传统的化石燃料燃烧提供了另一种策略。这种方法可以实现快速、有选择性和均匀的加热,为利用多余的可再生电能提供了巨大潜力,并为减少二氧化碳排放带来了重要机会。在这项工作中,我们概述了最先进的电加热驱动催化过程。我们介绍了焦耳加热的原理和基本原理,并将其与感应加热和微波加热进行了简要比较。通过比较,我们认为焦耳加热是最有前途的工艺电气化方法,并对其在甲烷重整、裂解反应、CO2 价值化和瞬态工艺操作中的应用进行了综述。从效率、扩大规模的潜力和改造的可能性等方面对其优缺点进行了批判性探讨。还讨论了目前在开发先进电气化工艺方面所面临的挑战以及下一代电气化技术所带来的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joule-Heated Catalytic Reactors toward Decarbonization and Process Intensification: A Review

The supply of the heat required for chemical processes via renewable electricity, i.e., process electrification, provides an alternative strategy for replacing conventional fossil fuel combustion. This approach enables fast, selective, and uniform heating, offers great potential for utilizing the excess renewable electric energy, and brings about an important chance for mitigating CO2 emissions. In this work, we provide an overview of the state-of-the-art electricity-to-heat driven catalytic processes. The principle and fundamentals of Joule heating are provided and briefly compared to induction and microwave heating in view of electrifying catalytic processes. By this comparison, we assess that Joule heating can be regarded as the most promising method for process electrification, and its applications to methane reforming, cracking reactions, CO2 valorization, and transient process operation are then reviewed. Advantages and disadvantages are critically addressed in terms of efficiency, potential for scale-up and possibility of retrofitting. The current challenges in the development of advanced electrified processes as well as the opportunities of next generation electrification techniques are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Engineering Au
ACS Engineering Au 化学工程技术-
自引率
0.00%
发文量
0
期刊介绍: )ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)
期刊最新文献
Issue Editorial Masthead Issue Publication Information Magnetowetting Dynamics of Compound Droplets Synthesis and Characterization of Dy2O3@TiO2 Nanocomposites for Enhanced Photocatalytic and Electrocatalytic Applications Synthesis and Characterization of Dy2O3@TiO2 Nanocomposites for Enhanced Photocatalytic and Electrocatalytic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1