{"title":"一场重大灾难的漫长阴影:假想的HayWired地震对加州经济的模拟动态影响","authors":"Ian Sue Wing, Adam Rose, Dan Wei, Anne Wein","doi":"10.1177/01600176231202451","DOIUrl":null,"url":null,"abstract":"We develop and apply a dynamic economic simulation model to analyze the multi-regional impacts of, and mechanisms of recovery from, a major disaster, the HayWired scenario — a hypothetical Magnitude 7.0 earthquake affecting California’s San Francisco Bay Area. The model integrates loss pathways: capital stock damage, labor supply shocks due to short-term population displacement and longer-run out-migration from damaged areas, and the exacerbating effects of damage to transportation infrastructure capital, as well as various aspects of static and dynamic economic resilience. With input substitution-based static inherent resilience and dynamic resilience in the form of optimal intertemporal and spatial investment allocation, gross output losses range from 0.5 percent to 6 percent across regions, and welfare losses are 0.4 percent statewide but can be ten times as large in hardest-hit areas. Large-scale reconstruction investment is supported by substantial interregional transfers of resources through intra-state trade. Increased output via firms engaging in the key adaptive resilience tactic of production recapture can alleviate a substantial fraction of losses—but only if upstream and downstream barriers to recovery can be lowered quickly.","PeriodicalId":51507,"journal":{"name":"International Regional Science Review","volume":"128 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Long Shadow of a Major Disaster: Modeled Dynamic Impacts of the Hypothetical HayWired Earthquake on California’s Economy\",\"authors\":\"Ian Sue Wing, Adam Rose, Dan Wei, Anne Wein\",\"doi\":\"10.1177/01600176231202451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop and apply a dynamic economic simulation model to analyze the multi-regional impacts of, and mechanisms of recovery from, a major disaster, the HayWired scenario — a hypothetical Magnitude 7.0 earthquake affecting California’s San Francisco Bay Area. The model integrates loss pathways: capital stock damage, labor supply shocks due to short-term population displacement and longer-run out-migration from damaged areas, and the exacerbating effects of damage to transportation infrastructure capital, as well as various aspects of static and dynamic economic resilience. With input substitution-based static inherent resilience and dynamic resilience in the form of optimal intertemporal and spatial investment allocation, gross output losses range from 0.5 percent to 6 percent across regions, and welfare losses are 0.4 percent statewide but can be ten times as large in hardest-hit areas. Large-scale reconstruction investment is supported by substantial interregional transfers of resources through intra-state trade. Increased output via firms engaging in the key adaptive resilience tactic of production recapture can alleviate a substantial fraction of losses—but only if upstream and downstream barriers to recovery can be lowered quickly.\",\"PeriodicalId\":51507,\"journal\":{\"name\":\"International Regional Science Review\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Regional Science Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01600176231202451\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Regional Science Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01600176231202451","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
The Long Shadow of a Major Disaster: Modeled Dynamic Impacts of the Hypothetical HayWired Earthquake on California’s Economy
We develop and apply a dynamic economic simulation model to analyze the multi-regional impacts of, and mechanisms of recovery from, a major disaster, the HayWired scenario — a hypothetical Magnitude 7.0 earthquake affecting California’s San Francisco Bay Area. The model integrates loss pathways: capital stock damage, labor supply shocks due to short-term population displacement and longer-run out-migration from damaged areas, and the exacerbating effects of damage to transportation infrastructure capital, as well as various aspects of static and dynamic economic resilience. With input substitution-based static inherent resilience and dynamic resilience in the form of optimal intertemporal and spatial investment allocation, gross output losses range from 0.5 percent to 6 percent across regions, and welfare losses are 0.4 percent statewide but can be ten times as large in hardest-hit areas. Large-scale reconstruction investment is supported by substantial interregional transfers of resources through intra-state trade. Increased output via firms engaging in the key adaptive resilience tactic of production recapture can alleviate a substantial fraction of losses—but only if upstream and downstream barriers to recovery can be lowered quickly.
期刊介绍:
International Regional Science Review serves as an international forum for economists, geographers, planners, and other social scientists to share important research findings and methodological breakthroughs. The journal serves as a catalyst for improving spatial and regional analysis within the social sciences and stimulating communication among the disciplines. IRSR deliberately helps define regional science by publishing key interdisciplinary survey articles that summarize and evaluate previous research and identify fruitful research directions. Focusing on issues of theory, method, and public policy where the spatial or regional dimension is central, IRSR strives to promote useful scholarly research that is securely tied to the real world.