{"title":"无外部作动器的主动控制复合箱式机械臂分析","authors":"Şefika İ Lök, Levent Malgaca, Mehmet Uyar","doi":"10.1177/09596518231196506","DOIUrl":null,"url":null,"abstract":"This study focuses on active vibration control for a single-link composite box manipulator by using a single actuator for driving and control actions. Model extraction and system identification techniques are studied to obtain mathematical models of the manipulator. The state space model is extracted from the finite element model using modal analysis conducted in ANSYS, while the system identification approach is an experimental modeling method using the input and output signals of the system. The input signals are defined as triangular and trapezoidal motion profiles, while the output signals are the acceleration signals of the manipulator. Proportional derivative and positive position feedback controllers are implemented on the obtained mathematical models to reduce residual vibrations. The simulation results are successfully verified by experiments, and uncontrolled/controlled results are evaluated with reduction rates.","PeriodicalId":20638,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","volume":"97 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of an actively controlled composite box manipulator without external actuator\",\"authors\":\"Şefika İ Lök, Levent Malgaca, Mehmet Uyar\",\"doi\":\"10.1177/09596518231196506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on active vibration control for a single-link composite box manipulator by using a single actuator for driving and control actions. Model extraction and system identification techniques are studied to obtain mathematical models of the manipulator. The state space model is extracted from the finite element model using modal analysis conducted in ANSYS, while the system identification approach is an experimental modeling method using the input and output signals of the system. The input signals are defined as triangular and trapezoidal motion profiles, while the output signals are the acceleration signals of the manipulator. Proportional derivative and positive position feedback controllers are implemented on the obtained mathematical models to reduce residual vibrations. The simulation results are successfully verified by experiments, and uncontrolled/controlled results are evaluated with reduction rates.\",\"PeriodicalId\":20638,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09596518231196506\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09596518231196506","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Analysis of an actively controlled composite box manipulator without external actuator
This study focuses on active vibration control for a single-link composite box manipulator by using a single actuator for driving and control actions. Model extraction and system identification techniques are studied to obtain mathematical models of the manipulator. The state space model is extracted from the finite element model using modal analysis conducted in ANSYS, while the system identification approach is an experimental modeling method using the input and output signals of the system. The input signals are defined as triangular and trapezoidal motion profiles, while the output signals are the acceleration signals of the manipulator. Proportional derivative and positive position feedback controllers are implemented on the obtained mathematical models to reduce residual vibrations. The simulation results are successfully verified by experiments, and uncontrolled/controlled results are evaluated with reduction rates.
期刊介绍:
Systems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering refleSystems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering reflects this diversity by giving prominence to experimental application and industrial studies.
"It is clear from the feedback we receive that the Journal is now recognised as one of the leaders in its field. We are particularly interested in highlighting experimental applications and industrial studies, but also new theoretical developments which are likely to provide the foundation for future applications. In 2009, we launched a new Series of "Forward Look" papers written by leading researchers and practitioners. These short articles are intended to be provocative and help to set the agenda for future developments. We continue to strive for fast decision times and minimum delays in the production processes." Professor Cliff Burrows - University of Bath, UK
This journal is a member of the Committee on Publication Ethics (COPE).cts this diversity by giving prominence to experimental application and industrial studies.