二氢单偶配位理想金属碎片的计算搜索

IF 1 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Australian Journal of Chemistry Pub Date : 2023-01-01 DOI:10.1071/ch23121
Lucía Morán-González, Feliu Maseras
{"title":"二氢单偶配位理想金属碎片的计算搜索","authors":"Lucía Morán-González, Feliu Maseras","doi":"10.1071/ch23121","DOIUrl":null,"url":null,"abstract":"Sigma complexes containing η2-H2 ligands, with both hydrogen atoms interacting with the metal center and with each other, are well known nowadays. The possibility of η1-H2 coordination, with only one hydrogen atom interacting with the metal center, remains an intriguing, but unreported, possibility. In this study, we used the hidden descriptors (HD) strategy previously developed in our group to investigate the capacity of well-established metal fragments to achieve stable LnM(η1-H2) metal complexes. Computational techniques, including low-cost density functional theory (DFT) calculations and the BDE Matrix App are used. The results confirm that the search for stable LnM(η1-H2) complexes is challenging, as no obvious candidate can be identified. Hints are obtained about what the properties of this hypothetic metal fragment should be, such as a strong tendency to covalent association with ligands. The outcomes of this research provide a comprehensive framework for comparing and investigating atypical candidates for this type of bonding and serve as a valuable resource for future explorations in this field.","PeriodicalId":8575,"journal":{"name":"Australian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational search of the ideal metal fragment for monohapto coordination of dihydrogen\",\"authors\":\"Lucía Morán-González, Feliu Maseras\",\"doi\":\"10.1071/ch23121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sigma complexes containing η2-H2 ligands, with both hydrogen atoms interacting with the metal center and with each other, are well known nowadays. The possibility of η1-H2 coordination, with only one hydrogen atom interacting with the metal center, remains an intriguing, but unreported, possibility. In this study, we used the hidden descriptors (HD) strategy previously developed in our group to investigate the capacity of well-established metal fragments to achieve stable LnM(η1-H2) metal complexes. Computational techniques, including low-cost density functional theory (DFT) calculations and the BDE Matrix App are used. The results confirm that the search for stable LnM(η1-H2) complexes is challenging, as no obvious candidate can be identified. Hints are obtained about what the properties of this hypothetic metal fragment should be, such as a strong tendency to covalent association with ligands. The outcomes of this research provide a comprehensive framework for comparing and investigating atypical candidates for this type of bonding and serve as a valuable resource for future explorations in this field.\",\"PeriodicalId\":8575,\"journal\":{\"name\":\"Australian Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/ch23121\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/ch23121","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

含有η - 2- h2配体的Sigma配合物,其两个氢原子与金属中心相互作用,并相互作用,目前已为人们所熟知。η - 1- h2配位的可能性,只有一个氢原子与金属中心相互作用,仍然是一个有趣的,但尚未报道的可能性。在这项研究中,我们使用了我们小组先前开发的隐藏描述符(HD)策略来研究已建立的金属碎片获得稳定的LnM(η - 1- h2)金属配合物的能力。计算技术,包括低成本密度泛函理论(DFT)计算和BDE矩阵应用程序。结果证实,寻找稳定的LnM(η - 1- h2)配合物是具有挑战性的,因为没有明显的候选物可以确定。得到了关于这个假设的金属碎片的性质的线索,例如与配体的共价结合的强烈倾向。本研究的结果为比较和研究这类键的非典型候选者提供了一个全面的框架,并为该领域的未来探索提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A computational search of the ideal metal fragment for monohapto coordination of dihydrogen
Sigma complexes containing η2-H2 ligands, with both hydrogen atoms interacting with the metal center and with each other, are well known nowadays. The possibility of η1-H2 coordination, with only one hydrogen atom interacting with the metal center, remains an intriguing, but unreported, possibility. In this study, we used the hidden descriptors (HD) strategy previously developed in our group to investigate the capacity of well-established metal fragments to achieve stable LnM(η1-H2) metal complexes. Computational techniques, including low-cost density functional theory (DFT) calculations and the BDE Matrix App are used. The results confirm that the search for stable LnM(η1-H2) complexes is challenging, as no obvious candidate can be identified. Hints are obtained about what the properties of this hypothetic metal fragment should be, such as a strong tendency to covalent association with ligands. The outcomes of this research provide a comprehensive framework for comparing and investigating atypical candidates for this type of bonding and serve as a valuable resource for future explorations in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Australian Journal of Chemistry
Australian Journal of Chemistry 化学-化学综合
CiteScore
2.50
自引率
0.00%
发文量
65
审稿时长
1.3 months
期刊介绍: Australian Journal of Chemistry - an International Journal for Chemical Science publishes research papers from all fields of chemical science. Papers that are multidisciplinary or address new or emerging areas of chemistry are particularly encouraged. Thus, the scope is dynamic. It includes (but is not limited to) synthesis, structure, new materials, macromolecules and polymers, supramolecular chemistry, analytical and environmental chemistry, natural products, biological and medicinal chemistry, nanotechnology, and surface chemistry. Australian Journal of Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
期刊最新文献
Expanding on the plecstatin anticancer agent class: exchange of the chlorido ligand for N-heterocyclic ligands The quantification of radical concentration in organic radical polymers: techniques and challenges Synthesis and stability studies of constrained peptide–antimony bicycles The cyclobutene diester approach to alkyl citrate natural products Novel fluorinated thiazolidin-4-one derivatives: synthesis and anti-cancer potential against HepG2 and HCT116 cell lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1