Zitao Tang;Siwei Chen;Cynthia I. Osuala;Abdus Salam Sarkar;Grzegorz Hader;Aron Cummings;Stefan Strauf;Chunlei Qu;Eui-Hyeok Yang
{"title":"4 K时cvd生长石墨烯环中Aharonov-Bohm电导振荡的观察","authors":"Zitao Tang;Siwei Chen;Cynthia I. Osuala;Abdus Salam Sarkar;Grzegorz Hader;Aron Cummings;Stefan Strauf;Chunlei Qu;Eui-Hyeok Yang","doi":"10.1109/OJNANO.2023.3331974","DOIUrl":null,"url":null,"abstract":"We present the observations of Aharonov-Bohm (AB) oscillations in chemical vapor deposition (CVD)-grown graphene rings via magnetotransport measurements at 4K under out-of-plane external magnetic fields up to +/−2.1 T. Incorporating a baseline subtraction of the original conductance data allowed us to observe two-terminal conductance oscillations with a spacing of ΔB\n<sub>AB</sub>\n of 3.66 to 32.9 mT from the ring with an inner radius of 200 nm and arm-width of 400 nm, and spacing of ΔB\n<sub>AB</sub>\n from 2.1 mT to 8.2 mT from the ring with an inner radius of 400 nm and an arm-width of 400 nm. The fast-Fourier transform (FFT) data showed AB oscillation periods, with the interval of the \n<italic>h/e</i>\n fundamental mode given by 30/T to 273/T for the ring with the inner radius of 200 nm and arm-width of 400 nm, and 122/T to 488/T for the ring with the inner radius of 400 nm. The broad spreading of FFT peaks is due to the aspect ratio of the inner radius \n<italic>r<sub>1</sub></i>\n and the width \n<italic>w</i>\n of the ring, \n<italic>r/w</i>\n ∼ 1. Systematic numerical simulations were performed to elucidate the relation between the AB oscillation frequency and the geometry of the ring. This work shows AB oscillations in CVD-grown graphene rings at an elevated temperature (4K).","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"208-214"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10314768","citationCount":"0","resultStr":"{\"title\":\"Observations of Aharonov-Bohm Conductance Oscillations in CVD-Grown Graphene Rings at 4K\",\"authors\":\"Zitao Tang;Siwei Chen;Cynthia I. Osuala;Abdus Salam Sarkar;Grzegorz Hader;Aron Cummings;Stefan Strauf;Chunlei Qu;Eui-Hyeok Yang\",\"doi\":\"10.1109/OJNANO.2023.3331974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the observations of Aharonov-Bohm (AB) oscillations in chemical vapor deposition (CVD)-grown graphene rings via magnetotransport measurements at 4K under out-of-plane external magnetic fields up to +/−2.1 T. Incorporating a baseline subtraction of the original conductance data allowed us to observe two-terminal conductance oscillations with a spacing of ΔB\\n<sub>AB</sub>\\n of 3.66 to 32.9 mT from the ring with an inner radius of 200 nm and arm-width of 400 nm, and spacing of ΔB\\n<sub>AB</sub>\\n from 2.1 mT to 8.2 mT from the ring with an inner radius of 400 nm and an arm-width of 400 nm. The fast-Fourier transform (FFT) data showed AB oscillation periods, with the interval of the \\n<italic>h/e</i>\\n fundamental mode given by 30/T to 273/T for the ring with the inner radius of 200 nm and arm-width of 400 nm, and 122/T to 488/T for the ring with the inner radius of 400 nm. The broad spreading of FFT peaks is due to the aspect ratio of the inner radius \\n<italic>r<sub>1</sub></i>\\n and the width \\n<italic>w</i>\\n of the ring, \\n<italic>r/w</i>\\n ∼ 1. Systematic numerical simulations were performed to elucidate the relation between the AB oscillation frequency and the geometry of the ring. This work shows AB oscillations in CVD-grown graphene rings at an elevated temperature (4K).\",\"PeriodicalId\":446,\"journal\":{\"name\":\"IEEE Open Journal of Nanotechnology\",\"volume\":\"4 \",\"pages\":\"208-214\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10314768\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10314768/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10314768/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Observations of Aharonov-Bohm Conductance Oscillations in CVD-Grown Graphene Rings at 4K
We present the observations of Aharonov-Bohm (AB) oscillations in chemical vapor deposition (CVD)-grown graphene rings via magnetotransport measurements at 4K under out-of-plane external magnetic fields up to +/−2.1 T. Incorporating a baseline subtraction of the original conductance data allowed us to observe two-terminal conductance oscillations with a spacing of ΔB
AB
of 3.66 to 32.9 mT from the ring with an inner radius of 200 nm and arm-width of 400 nm, and spacing of ΔB
AB
from 2.1 mT to 8.2 mT from the ring with an inner radius of 400 nm and an arm-width of 400 nm. The fast-Fourier transform (FFT) data showed AB oscillation periods, with the interval of the
h/e
fundamental mode given by 30/T to 273/T for the ring with the inner radius of 200 nm and arm-width of 400 nm, and 122/T to 488/T for the ring with the inner radius of 400 nm. The broad spreading of FFT peaks is due to the aspect ratio of the inner radius
r1
and the width
w
of the ring,
r/w
∼ 1. Systematic numerical simulations were performed to elucidate the relation between the AB oscillation frequency and the geometry of the ring. This work shows AB oscillations in CVD-grown graphene rings at an elevated temperature (4K).