{"title":"基于深度卷积神经网络的视听语音识别","authors":"Shashidhar Rudregowda , Sudarshan Patilkulkarni , Vinayakumar Ravi , Gururaj H.L. , Moez Krichen","doi":"10.1016/j.dsm.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Audiovisual speech recognition is an emerging research topic. Lipreading is the recognition of what someone is saying using visual information, primarily lip movements. In this study, we created a custom dataset for Indian English linguistics and categorized it into three main categories: (1) audio recognition, (2) visual feature extraction, and (3) combined audio and visual recognition. Audio features were extracted using the mel-frequency cepstral coefficient, and classification was performed using a one-dimension convolutional neural network. Visual feature extraction uses Dlib and then classifies visual speech using a long short-term memory type of recurrent neural networks. Finally, integration was performed using a deep convolutional network. The audio speech of Indian English was successfully recognized with accuracies of 93.67% and 91.53%, respectively, using testing data from two hundred epochs. The training accuracy for visual speech recognition using the Indian English dataset was 77.48% and the test accuracy was 76.19% using 60 epochs. After integration, the accuracies of audiovisual speech recognition using the Indian English dataset for training and testing were 94.67% and 91.75%, respectively.</p></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666764923000450/pdfft?md5=597d60fcaaa84868fbbf5a954573c7c1&pid=1-s2.0-S2666764923000450-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Audiovisual speech recognition based on a deep convolutional neural network\",\"authors\":\"Shashidhar Rudregowda , Sudarshan Patilkulkarni , Vinayakumar Ravi , Gururaj H.L. , Moez Krichen\",\"doi\":\"10.1016/j.dsm.2023.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Audiovisual speech recognition is an emerging research topic. Lipreading is the recognition of what someone is saying using visual information, primarily lip movements. In this study, we created a custom dataset for Indian English linguistics and categorized it into three main categories: (1) audio recognition, (2) visual feature extraction, and (3) combined audio and visual recognition. Audio features were extracted using the mel-frequency cepstral coefficient, and classification was performed using a one-dimension convolutional neural network. Visual feature extraction uses Dlib and then classifies visual speech using a long short-term memory type of recurrent neural networks. Finally, integration was performed using a deep convolutional network. The audio speech of Indian English was successfully recognized with accuracies of 93.67% and 91.53%, respectively, using testing data from two hundred epochs. The training accuracy for visual speech recognition using the Indian English dataset was 77.48% and the test accuracy was 76.19% using 60 epochs. After integration, the accuracies of audiovisual speech recognition using the Indian English dataset for training and testing were 94.67% and 91.75%, respectively.</p></div>\",\"PeriodicalId\":100353,\"journal\":{\"name\":\"Data Science and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666764923000450/pdfft?md5=597d60fcaaa84868fbbf5a954573c7c1&pid=1-s2.0-S2666764923000450-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666764923000450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764923000450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Audiovisual speech recognition based on a deep convolutional neural network
Audiovisual speech recognition is an emerging research topic. Lipreading is the recognition of what someone is saying using visual information, primarily lip movements. In this study, we created a custom dataset for Indian English linguistics and categorized it into three main categories: (1) audio recognition, (2) visual feature extraction, and (3) combined audio and visual recognition. Audio features were extracted using the mel-frequency cepstral coefficient, and classification was performed using a one-dimension convolutional neural network. Visual feature extraction uses Dlib and then classifies visual speech using a long short-term memory type of recurrent neural networks. Finally, integration was performed using a deep convolutional network. The audio speech of Indian English was successfully recognized with accuracies of 93.67% and 91.53%, respectively, using testing data from two hundred epochs. The training accuracy for visual speech recognition using the Indian English dataset was 77.48% and the test accuracy was 76.19% using 60 epochs. After integration, the accuracies of audiovisual speech recognition using the Indian English dataset for training and testing were 94.67% and 91.75%, respectively.