连接三层铝/聚合物/铝复合板的夹紧工艺实验研究

Rasoul Naderli, Ali Fazli
{"title":"连接三层铝/聚合物/铝复合板的夹紧工艺实验研究","authors":"Rasoul Naderli,&nbsp;Ali Fazli","doi":"10.1016/j.ijlmm.2023.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>Three-layer aluminum/polymer/aluminum composite sheets are among the new materials developed to reduce the weight and fuel consumption of vehicles. Using the conventional methods for joining these materials to other materials is challenging. In this paper, the joinability of the three-layer aluminum/polymer/aluminum to a single-layer 1 mm-thickness aluminum sheet, in the clinching process is investigated. Three-layer sheets of AA5754/polyethylene/AA5754 with thicknesses of 0.5/0.6/0.5 mm were produced under laboratory conditions using two different methods; with and without a local reinforcement piece in the polymer core. The prepared specimens are joined using various geometric parameters of the clinching tools. The joint sections and their geometric parameters including interlock and neck thickness are evaluated in different joint conditions. Also, the strengths of the joints are examined by shear and peel tests. Studies show that it is possible to use the clinching process to join aluminum/polymer/aluminum sheets. Also, with a proper design of tools, the joint strength can be in the same order as the strength of the clinching of single-layer sheets. The maximum shear and peel test strengths, obtained in this study are 1288 N and 540 N, respectively. Increasing the pin penetration depth increases the interlock up to an optimal value. However, further increases in the pin penetration depth will decrease the neck thickness and joint strength. The conical angle of the pin, increasing the die cavity depth, and using a local reinforcement piece reduces the strength of the clinched joint and interlock in these materials. In all the test conditions, the most suitable joint conditions were when the failure mode was combined bottom separation and neck fracture mode.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588840423000513/pdfft?md5=6447b0f32591a713189a71874a06b8e7&pid=1-s2.0-S2588840423000513-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of the clinching process for joining the three-layer aluminum/polymer/aluminum composite sheets\",\"authors\":\"Rasoul Naderli,&nbsp;Ali Fazli\",\"doi\":\"10.1016/j.ijlmm.2023.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three-layer aluminum/polymer/aluminum composite sheets are among the new materials developed to reduce the weight and fuel consumption of vehicles. Using the conventional methods for joining these materials to other materials is challenging. In this paper, the joinability of the three-layer aluminum/polymer/aluminum to a single-layer 1 mm-thickness aluminum sheet, in the clinching process is investigated. Three-layer sheets of AA5754/polyethylene/AA5754 with thicknesses of 0.5/0.6/0.5 mm were produced under laboratory conditions using two different methods; with and without a local reinforcement piece in the polymer core. The prepared specimens are joined using various geometric parameters of the clinching tools. The joint sections and their geometric parameters including interlock and neck thickness are evaluated in different joint conditions. Also, the strengths of the joints are examined by shear and peel tests. Studies show that it is possible to use the clinching process to join aluminum/polymer/aluminum sheets. Also, with a proper design of tools, the joint strength can be in the same order as the strength of the clinching of single-layer sheets. The maximum shear and peel test strengths, obtained in this study are 1288 N and 540 N, respectively. Increasing the pin penetration depth increases the interlock up to an optimal value. However, further increases in the pin penetration depth will decrease the neck thickness and joint strength. The conical angle of the pin, increasing the die cavity depth, and using a local reinforcement piece reduces the strength of the clinched joint and interlock in these materials. In all the test conditions, the most suitable joint conditions were when the failure mode was combined bottom separation and neck fracture mode.</p></div>\",\"PeriodicalId\":52306,\"journal\":{\"name\":\"International Journal of Lightweight Materials and Manufacture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588840423000513/pdfft?md5=6447b0f32591a713189a71874a06b8e7&pid=1-s2.0-S2588840423000513-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Lightweight Materials and Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588840423000513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840423000513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

三层铝/聚合物/铝复合板是为减轻汽车重量和降低油耗而开发的新材料之一。使用传统方法将这些材料与其他材料连接起来具有挑战性。本文研究了三层铝/聚合物/铝与单层 1 毫米厚铝板在粘合过程中的连接性。在实验室条件下,采用两种不同的方法制作了厚度为 0.5/0.6/0.5 毫米的 AA5754/聚乙烯/AA5754 三层板材:在聚合物芯材中添加和不添加局部增强片。使用不同几何参数的夹持工具将制备好的试样连接起来。在不同的连接条件下,对连接部分及其几何参数(包括互锁和颈部厚度)进行了评估。此外,还通过剪切和剥离试验检测了接合处的强度。研究表明,铝板/聚合物板/铝板的连接可以采用铆接工艺。此外,如果工具设计得当,接合强度可以与单层板材的夹合强度处于同一等级。本研究获得的最大剪切强度和剥离强度分别为 1288 牛顿和 540 牛顿。增加插销插入深度可将互锁效果提高到最佳值。然而,进一步增加销钉插入深度会降低颈部厚度和连接强度。销钉的锥形角度、模腔深度的增加以及使用局部加固件都会降低这些材料的咬合强度和联锁强度。在所有试验条件中,当失效模式为底部分离和颈部断裂联合模式时,是最合适的连接条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation of the clinching process for joining the three-layer aluminum/polymer/aluminum composite sheets

Three-layer aluminum/polymer/aluminum composite sheets are among the new materials developed to reduce the weight and fuel consumption of vehicles. Using the conventional methods for joining these materials to other materials is challenging. In this paper, the joinability of the three-layer aluminum/polymer/aluminum to a single-layer 1 mm-thickness aluminum sheet, in the clinching process is investigated. Three-layer sheets of AA5754/polyethylene/AA5754 with thicknesses of 0.5/0.6/0.5 mm were produced under laboratory conditions using two different methods; with and without a local reinforcement piece in the polymer core. The prepared specimens are joined using various geometric parameters of the clinching tools. The joint sections and their geometric parameters including interlock and neck thickness are evaluated in different joint conditions. Also, the strengths of the joints are examined by shear and peel tests. Studies show that it is possible to use the clinching process to join aluminum/polymer/aluminum sheets. Also, with a proper design of tools, the joint strength can be in the same order as the strength of the clinching of single-layer sheets. The maximum shear and peel test strengths, obtained in this study are 1288 N and 540 N, respectively. Increasing the pin penetration depth increases the interlock up to an optimal value. However, further increases in the pin penetration depth will decrease the neck thickness and joint strength. The conical angle of the pin, increasing the die cavity depth, and using a local reinforcement piece reduces the strength of the clinched joint and interlock in these materials. In all the test conditions, the most suitable joint conditions were when the failure mode was combined bottom separation and neck fracture mode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
期刊最新文献
Editorial Board Modeling and investigation of combined processes of casting, rolling, and extrusion to produce electrical wire from alloys Al–Zr system Characteristics of phases and processing techniques of high entropy alloys Editorial Board Microstructural, Electrochemical, and Hot Corrosion Analysis of CoCrFeCuTi High Entropy Alloy Reinforced Titanium Matrix Composites synthesized by Microwave Sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1