科威特大型藻类的生态生理学,特别强调与海水淡化厂出口条件有关的温度和盐度耐受性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-10-01 DOI:10.1515/bot-2022-0049
Amal H. Hajiya Hasan, Dhia A. Al-Bader, Steve Woodward, Akira F. Peters, Frithjof C. Küpper
{"title":"科威特大型藻类的生态生理学,特别强调与海水淡化厂出口条件有关的温度和盐度耐受性","authors":"Amal H. Hajiya Hasan, Dhia A. Al-Bader, Steve Woodward, Akira F. Peters, Frithjof C. Küpper","doi":"10.1515/bot-2022-0049","DOIUrl":null,"url":null,"abstract":"Abstract Brine discharged from seawater desalination plants impacts marine life by exposure to increased salinity and, in some cases, temperature. However, the responses of individual species to such stress remains poorly known yet their understanding is essential for assessing and predicting the impacts of seawater desalination plants. In this study, unialgal cultures obtained by the germling emergence method of 34 taxa representative of the Rhodophyta, Chlorophyta and Phaeophyceae seaweeds in the Arabian Gulf, and isolated from the vicinity of two large desalination plants in Kuwait, were subjected to increased temperature and salinity under experimental conditions in the laboratory. The dataset is complemented by measurements of seawater temperature and salinity obtained at increasing distances from the outfalls of desalination plants and along the Kuwaiti coastline including from two pristine areas, Boubiyan and Fintas. Chlorophyta, especially Ulva spp., and Phaeophyceae displayed remarkable tolerance against hypersaline and thermal stress, suggesting that this group can cope better with adverse environmental conditions. Members of the Rhodophyta were considerably more sensitive to temperature increases.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecophysiology of Kuwaiti macroalgae with special emphasis on temperature and salinity tolerance related to the conditions at desalination plant outfalls\",\"authors\":\"Amal H. Hajiya Hasan, Dhia A. Al-Bader, Steve Woodward, Akira F. Peters, Frithjof C. Küpper\",\"doi\":\"10.1515/bot-2022-0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Brine discharged from seawater desalination plants impacts marine life by exposure to increased salinity and, in some cases, temperature. However, the responses of individual species to such stress remains poorly known yet their understanding is essential for assessing and predicting the impacts of seawater desalination plants. In this study, unialgal cultures obtained by the germling emergence method of 34 taxa representative of the Rhodophyta, Chlorophyta and Phaeophyceae seaweeds in the Arabian Gulf, and isolated from the vicinity of two large desalination plants in Kuwait, were subjected to increased temperature and salinity under experimental conditions in the laboratory. The dataset is complemented by measurements of seawater temperature and salinity obtained at increasing distances from the outfalls of desalination plants and along the Kuwaiti coastline including from two pristine areas, Boubiyan and Fintas. Chlorophyta, especially Ulva spp., and Phaeophyceae displayed remarkable tolerance against hypersaline and thermal stress, suggesting that this group can cope better with adverse environmental conditions. Members of the Rhodophyta were considerably more sensitive to temperature increases.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bot-2022-0049\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bot-2022-0049","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

海水淡化厂排放的盐水会增加海水的盐度,在某些情况下还会增加温度,从而影响海洋生物。然而,个别物种对这种压力的反应仍然知之甚少,但它们的理解对于评估和预测海水淡化厂的影响至关重要。在本研究中,在实验室的实验条件下,对科威特两个大型海水淡化厂附近分离的阿拉伯湾红藻、绿藻和褐藻的34个分类群进行了单藻培养,采用胚出法获得单藻培养物。该数据集还得到了海水温度和盐度测量值的补充,这些测量值是在距离海水淡化厂出口越来越远的地方和科威特海岸线上获得的,包括两个原始地区,Boubiyan和Fintas。绿藻类,尤其是绿藻类和褐藻类对高盐胁迫和热胁迫表现出较强的耐受性,表明绿藻类能更好地应对恶劣的环境条件。红藻门的成员对温度升高相当敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ecophysiology of Kuwaiti macroalgae with special emphasis on temperature and salinity tolerance related to the conditions at desalination plant outfalls
Abstract Brine discharged from seawater desalination plants impacts marine life by exposure to increased salinity and, in some cases, temperature. However, the responses of individual species to such stress remains poorly known yet their understanding is essential for assessing and predicting the impacts of seawater desalination plants. In this study, unialgal cultures obtained by the germling emergence method of 34 taxa representative of the Rhodophyta, Chlorophyta and Phaeophyceae seaweeds in the Arabian Gulf, and isolated from the vicinity of two large desalination plants in Kuwait, were subjected to increased temperature and salinity under experimental conditions in the laboratory. The dataset is complemented by measurements of seawater temperature and salinity obtained at increasing distances from the outfalls of desalination plants and along the Kuwaiti coastline including from two pristine areas, Boubiyan and Fintas. Chlorophyta, especially Ulva spp., and Phaeophyceae displayed remarkable tolerance against hypersaline and thermal stress, suggesting that this group can cope better with adverse environmental conditions. Members of the Rhodophyta were considerably more sensitive to temperature increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1