基于核反共振的太赫兹空腔及其应用[特邀]

IF 3.3 2区 物理与天体物理 Q2 OPTICS Chinese Optics Letters Pub Date : 2023-01-01 DOI:10.3788/col202321.110005
Yongpeng Han, Yangjun Mei, Chang Liu, Li Lao, Yao Yao, Jiahao Xiao, Jiayu Zhao, Yan Peng
{"title":"基于核反共振的太赫兹空腔及其应用[特邀]","authors":"Yongpeng Han, Yangjun Mei, Chang Liu, Li Lao, Yao Yao, Jiahao Xiao, Jiayu Zhao, Yan Peng","doi":"10.3788/col202321.110005","DOIUrl":null,"url":null,"abstract":"This work presents a brief review of our recent research on an antiresonant mechanism named core antiresonant reflection (CARR), which leads to a broadband terahertz (THz) spectrum output with periodic dips at resonant frequencies after its transmission along a hollow-core tubular structure (e.g., a paper tube). The CARR theory relies only on parameters of the tube core (e.g., the inner diameter) rather than the cladding, thus being distinct from existing principles such as the traditional antiresonant reflection inside optical waveguides (ARROWs). We demonstrate that diverse tubular structures, including cylindrical, polyhedral, spiral, meshy, and notched hollow tubes with either transparent or opaque cladding materials, as well as a thick-walled hole, could indeed become CARR-type resonators. Based on this CARR effect, we also perform various applications, such as pressure sensing with paper-folded THz cavities, force/magnetism-driven chiral polarization modulations, and single-pulse measurements of the angular dispersion of THz beams. In future studies, the proposed CARR method promises to support breakthroughs in multiple fields by means of being extended to more kinds of tubular entities for enhancing their interactions with light waves in an antiresonance manner.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"40 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core-antiresonance-based terahertz cavities and applications [Invited]\",\"authors\":\"Yongpeng Han, Yangjun Mei, Chang Liu, Li Lao, Yao Yao, Jiahao Xiao, Jiayu Zhao, Yan Peng\",\"doi\":\"10.3788/col202321.110005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a brief review of our recent research on an antiresonant mechanism named core antiresonant reflection (CARR), which leads to a broadband terahertz (THz) spectrum output with periodic dips at resonant frequencies after its transmission along a hollow-core tubular structure (e.g., a paper tube). The CARR theory relies only on parameters of the tube core (e.g., the inner diameter) rather than the cladding, thus being distinct from existing principles such as the traditional antiresonant reflection inside optical waveguides (ARROWs). We demonstrate that diverse tubular structures, including cylindrical, polyhedral, spiral, meshy, and notched hollow tubes with either transparent or opaque cladding materials, as well as a thick-walled hole, could indeed become CARR-type resonators. Based on this CARR effect, we also perform various applications, such as pressure sensing with paper-folded THz cavities, force/magnetism-driven chiral polarization modulations, and single-pulse measurements of the angular dispersion of THz beams. In future studies, the proposed CARR method promises to support breakthroughs in multiple fields by means of being extended to more kinds of tubular entities for enhancing their interactions with light waves in an antiresonance manner.\",\"PeriodicalId\":10293,\"journal\":{\"name\":\"Chinese Optics Letters\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Optics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3788/col202321.110005\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/col202321.110005","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文简要回顾了我们最近对一种名为核心反共振反射(CARR)的反谐振机制的研究,该机制导致宽带太赫兹(THz)频谱输出在沿空心核心管状结构(例如纸管)传输后在谐振频率处具有周期性下降。CARR理论只依赖于管芯的参数(如内径),而不是包层,因此与现有的原理(如传统的光波导内部抗共振反射)不同。我们证明了各种管状结构,包括圆柱形,多面体,螺旋形,网状和缺口空心管,透明或不透明的包层材料,以及厚壁孔,确实可以成为carr型谐振器。基于这种CARR效应,我们还进行了各种应用,例如用纸折叠的太赫兹腔的压力传感,力/磁驱动的手性极化调制,以及太赫兹光束角色散的单脉冲测量。在未来的研究中,所提出的CARR方法有望通过扩展到更多种类的管状实体,以反共振方式增强其与光波的相互作用,从而支持多个领域的突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Core-antiresonance-based terahertz cavities and applications [Invited]
This work presents a brief review of our recent research on an antiresonant mechanism named core antiresonant reflection (CARR), which leads to a broadband terahertz (THz) spectrum output with periodic dips at resonant frequencies after its transmission along a hollow-core tubular structure (e.g., a paper tube). The CARR theory relies only on parameters of the tube core (e.g., the inner diameter) rather than the cladding, thus being distinct from existing principles such as the traditional antiresonant reflection inside optical waveguides (ARROWs). We demonstrate that diverse tubular structures, including cylindrical, polyhedral, spiral, meshy, and notched hollow tubes with either transparent or opaque cladding materials, as well as a thick-walled hole, could indeed become CARR-type resonators. Based on this CARR effect, we also perform various applications, such as pressure sensing with paper-folded THz cavities, force/magnetism-driven chiral polarization modulations, and single-pulse measurements of the angular dispersion of THz beams. In future studies, the proposed CARR method promises to support breakthroughs in multiple fields by means of being extended to more kinds of tubular entities for enhancing their interactions with light waves in an antiresonance manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Optics Letters
Chinese Optics Letters 物理-光学
CiteScore
5.60
自引率
20.00%
发文量
180
审稿时长
2.3 months
期刊介绍: Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc. COL is distinguished by its short review period (~30 days) and publication period (~100 days). With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.
期刊最新文献
Photon pair generation from lithium niobate metasurface with tunable spatial entanglement High-dimensional frequency conversion in a hot atomic system All-solid-state far-UVC pulse laser at 222 nm wavelength for UVC disinfection Intracavity third-harmonic generation in a continuous-wave/self-mode-locked semiconductor disk laser Photonics 60 GBaud PDM-16QAM fiber-wireless 2 × 2 MIMO delivery at THz-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1