Yongpeng Han, Yangjun Mei, Chang Liu, Li Lao, Yao Yao, Jiahao Xiao, Jiayu Zhao, Yan Peng
{"title":"基于核反共振的太赫兹空腔及其应用[特邀]","authors":"Yongpeng Han, Yangjun Mei, Chang Liu, Li Lao, Yao Yao, Jiahao Xiao, Jiayu Zhao, Yan Peng","doi":"10.3788/col202321.110005","DOIUrl":null,"url":null,"abstract":"This work presents a brief review of our recent research on an antiresonant mechanism named core antiresonant reflection (CARR), which leads to a broadband terahertz (THz) spectrum output with periodic dips at resonant frequencies after its transmission along a hollow-core tubular structure (e.g., a paper tube). The CARR theory relies only on parameters of the tube core (e.g., the inner diameter) rather than the cladding, thus being distinct from existing principles such as the traditional antiresonant reflection inside optical waveguides (ARROWs). We demonstrate that diverse tubular structures, including cylindrical, polyhedral, spiral, meshy, and notched hollow tubes with either transparent or opaque cladding materials, as well as a thick-walled hole, could indeed become CARR-type resonators. Based on this CARR effect, we also perform various applications, such as pressure sensing with paper-folded THz cavities, force/magnetism-driven chiral polarization modulations, and single-pulse measurements of the angular dispersion of THz beams. In future studies, the proposed CARR method promises to support breakthroughs in multiple fields by means of being extended to more kinds of tubular entities for enhancing their interactions with light waves in an antiresonance manner.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"40 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core-antiresonance-based terahertz cavities and applications [Invited]\",\"authors\":\"Yongpeng Han, Yangjun Mei, Chang Liu, Li Lao, Yao Yao, Jiahao Xiao, Jiayu Zhao, Yan Peng\",\"doi\":\"10.3788/col202321.110005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a brief review of our recent research on an antiresonant mechanism named core antiresonant reflection (CARR), which leads to a broadband terahertz (THz) spectrum output with periodic dips at resonant frequencies after its transmission along a hollow-core tubular structure (e.g., a paper tube). The CARR theory relies only on parameters of the tube core (e.g., the inner diameter) rather than the cladding, thus being distinct from existing principles such as the traditional antiresonant reflection inside optical waveguides (ARROWs). We demonstrate that diverse tubular structures, including cylindrical, polyhedral, spiral, meshy, and notched hollow tubes with either transparent or opaque cladding materials, as well as a thick-walled hole, could indeed become CARR-type resonators. Based on this CARR effect, we also perform various applications, such as pressure sensing with paper-folded THz cavities, force/magnetism-driven chiral polarization modulations, and single-pulse measurements of the angular dispersion of THz beams. In future studies, the proposed CARR method promises to support breakthroughs in multiple fields by means of being extended to more kinds of tubular entities for enhancing their interactions with light waves in an antiresonance manner.\",\"PeriodicalId\":10293,\"journal\":{\"name\":\"Chinese Optics Letters\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Optics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3788/col202321.110005\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/col202321.110005","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Core-antiresonance-based terahertz cavities and applications [Invited]
This work presents a brief review of our recent research on an antiresonant mechanism named core antiresonant reflection (CARR), which leads to a broadband terahertz (THz) spectrum output with periodic dips at resonant frequencies after its transmission along a hollow-core tubular structure (e.g., a paper tube). The CARR theory relies only on parameters of the tube core (e.g., the inner diameter) rather than the cladding, thus being distinct from existing principles such as the traditional antiresonant reflection inside optical waveguides (ARROWs). We demonstrate that diverse tubular structures, including cylindrical, polyhedral, spiral, meshy, and notched hollow tubes with either transparent or opaque cladding materials, as well as a thick-walled hole, could indeed become CARR-type resonators. Based on this CARR effect, we also perform various applications, such as pressure sensing with paper-folded THz cavities, force/magnetism-driven chiral polarization modulations, and single-pulse measurements of the angular dispersion of THz beams. In future studies, the proposed CARR method promises to support breakthroughs in multiple fields by means of being extended to more kinds of tubular entities for enhancing their interactions with light waves in an antiresonance manner.
期刊介绍:
Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc.
COL is distinguished by its short review period (~30 days) and publication period (~100 days).
With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.