基于增强干涉理论的线偏振转换和非对称传输超宽带手性超表面

IF 3.3 2区 物理与天体物理 Q2 OPTICS Chinese Optics Letters Pub Date : 2023-01-01 DOI:10.3788/col202321.113602
Jingcheng Zhao, Nan Li, Yongzhi Cheng
{"title":"基于增强干涉理论的线偏振转换和非对称传输超宽带手性超表面","authors":"Jingcheng Zhao, Nan Li, Yongzhi Cheng","doi":"10.3788/col202321.113602","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an ultrabroadband chiral metasurface (CMS) composed of S-shaped resonator structures situated between two twisted subwavelength gratings and dielectric substrate. This innovative structure enables ultrabroadband and high-efficiency linear polarization (LP) conversion, as well as asymmetric transmission (AT) effect in the microwave region. The enhanced interference effect of the Fabry–Perot-like resonance cavity greatly expands the bandwidth and efficiency of LP conversion and AT effect. Through numerical simulations, it has been revealed that the cross-polarization transmission coefficients for normal forward (-z) and backward (+z) incidence exceed 0.8 in the frequency range of 4.13 to 17.34 GHz, accompanied by a polarization conversion ratio of over 99%. Furthermore, our microwave experimental results validate the consistency among simulation, theory, and measurement. Additionally, we elucidate the distinct characteristics of ultrabroadband LP conversion and significant AT effect through analysis of polarization azimuth rotation and ellipticity angles, total transmittance, AT coefficient, and electric field distribution. The proposed CMS structure shows excellent polarization conversion properties via AT effect and has potential applications in areas such as radar, remote sensing, and satellite communication.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"33 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ultrabroadband chiral metasurface for linear polarization conversion and asymmetric transmission based on enhanced interference theory\",\"authors\":\"Jingcheng Zhao, Nan Li, Yongzhi Cheng\",\"doi\":\"10.3788/col202321.113602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an ultrabroadband chiral metasurface (CMS) composed of S-shaped resonator structures situated between two twisted subwavelength gratings and dielectric substrate. This innovative structure enables ultrabroadband and high-efficiency linear polarization (LP) conversion, as well as asymmetric transmission (AT) effect in the microwave region. The enhanced interference effect of the Fabry–Perot-like resonance cavity greatly expands the bandwidth and efficiency of LP conversion and AT effect. Through numerical simulations, it has been revealed that the cross-polarization transmission coefficients for normal forward (-z) and backward (+z) incidence exceed 0.8 in the frequency range of 4.13 to 17.34 GHz, accompanied by a polarization conversion ratio of over 99%. Furthermore, our microwave experimental results validate the consistency among simulation, theory, and measurement. Additionally, we elucidate the distinct characteristics of ultrabroadband LP conversion and significant AT effect through analysis of polarization azimuth rotation and ellipticity angles, total transmittance, AT coefficient, and electric field distribution. The proposed CMS structure shows excellent polarization conversion properties via AT effect and has potential applications in areas such as radar, remote sensing, and satellite communication.\",\"PeriodicalId\":10293,\"journal\":{\"name\":\"Chinese Optics Letters\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Optics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3788/col202321.113602\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/col202321.113602","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种由位于两个扭曲亚波长光栅和介质衬底之间的s形谐振腔结构组成的超宽带手性超表面(CMS)。这种创新的结构实现了超宽带和高效率的线性极化(LP)转换,以及微波区域的不对称传输(AT)效应。类法布里-珀罗谐振腔的干涉效应增强,极大地扩展了LP转换和AT效应的带宽和效率。通过数值模拟发现,在4.13 ~ 17.34 GHz频率范围内,正向(-z)和反向(+z)入射交叉极化透射系数大于0.8,极化转化率大于99%。此外,我们的微波实验结果验证了仿真、理论和测量的一致性。此外,通过对极化方位角、椭圆度角、总透过率、AT系数和电场分布的分析,阐明了超宽带LP转换的显著特性和显著的AT效应。所提出的CMS结构通过AT效应表现出优异的极化转换性能,在雷达、遥感和卫星通信等领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrabroadband chiral metasurface for linear polarization conversion and asymmetric transmission based on enhanced interference theory
In this paper, we propose an ultrabroadband chiral metasurface (CMS) composed of S-shaped resonator structures situated between two twisted subwavelength gratings and dielectric substrate. This innovative structure enables ultrabroadband and high-efficiency linear polarization (LP) conversion, as well as asymmetric transmission (AT) effect in the microwave region. The enhanced interference effect of the Fabry–Perot-like resonance cavity greatly expands the bandwidth and efficiency of LP conversion and AT effect. Through numerical simulations, it has been revealed that the cross-polarization transmission coefficients for normal forward (-z) and backward (+z) incidence exceed 0.8 in the frequency range of 4.13 to 17.34 GHz, accompanied by a polarization conversion ratio of over 99%. Furthermore, our microwave experimental results validate the consistency among simulation, theory, and measurement. Additionally, we elucidate the distinct characteristics of ultrabroadband LP conversion and significant AT effect through analysis of polarization azimuth rotation and ellipticity angles, total transmittance, AT coefficient, and electric field distribution. The proposed CMS structure shows excellent polarization conversion properties via AT effect and has potential applications in areas such as radar, remote sensing, and satellite communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Optics Letters
Chinese Optics Letters 物理-光学
CiteScore
5.60
自引率
20.00%
发文量
180
审稿时长
2.3 months
期刊介绍: Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc. COL is distinguished by its short review period (~30 days) and publication period (~100 days). With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.
期刊最新文献
Photon pair generation from lithium niobate metasurface with tunable spatial entanglement High-dimensional frequency conversion in a hot atomic system All-solid-state far-UVC pulse laser at 222 nm wavelength for UVC disinfection Intracavity third-harmonic generation in a continuous-wave/self-mode-locked semiconductor disk laser Photonics 60 GBaud PDM-16QAM fiber-wireless 2 × 2 MIMO delivery at THz-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1