智能反射面辅助多层混合计算

IF 8.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Selected Topics in Signal Processing Pub Date : 2023-11-13 DOI:10.1109/JSTSP.2023.3332455
Yapeng Zhao;Qingqing Wu;Guangji Chen;Wen Chen;Ruiqi Liu;Ming-Min Zhao;Yuan Wu;Shaodan Ma
{"title":"智能反射面辅助多层混合计算","authors":"Yapeng Zhao;Qingqing Wu;Guangji Chen;Wen Chen;Ruiqi Liu;Ming-Min Zhao;Yuan Wu;Shaodan Ma","doi":"10.1109/JSTSP.2023.3332455","DOIUrl":null,"url":null,"abstract":"The digital twin edge network (DITEN) aims to integrate mobile edge computing (MEC) and digital twin (DT) to provide real-time system configuration and flexible resource allocation for the sixth-generation network. This paper investigates an intelligent reflecting surface (IRS)-aided multi-tier hybrid computing system that can achieve mutual benefits for DT and MEC in the DITEN. For the first time, this paper presents the opportunity to realize the network-wide convergence of DT and MEC. In the considered system, specifically, over-the-air computation (AirComp) is employed to monitor the status of the DT system, while MEC is performed with the assistance of DT to provide low-latency computing services. Besides, the IRS is utilized to enhance signal transmission and mitigate interference among heterogeneous nodes. We propose a framework for designing the hybrid computing system, aiming to maximize the sum computation rate under communication and computation resources constraints. To tackle the non-convex optimization problem, alternative optimization and successive convex approximation techniques are leveraged to decouple variables and then transform the problem into a more tractable form. Simulation results verify the effectiveness of the proposed algorithm and demonstrate the IRS can significantly improve the system performance with appropriate phase shift configurations. Moreover, the results indicate that the DT assisted MEC system can precisely achieve the balance between local computing and task offloading since real-time system status can be obtained with the help of DT.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 1","pages":"83-97"},"PeriodicalIF":8.7000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Reflecting Surface Aided Multi-Tier Hybrid Computing\",\"authors\":\"Yapeng Zhao;Qingqing Wu;Guangji Chen;Wen Chen;Ruiqi Liu;Ming-Min Zhao;Yuan Wu;Shaodan Ma\",\"doi\":\"10.1109/JSTSP.2023.3332455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The digital twin edge network (DITEN) aims to integrate mobile edge computing (MEC) and digital twin (DT) to provide real-time system configuration and flexible resource allocation for the sixth-generation network. This paper investigates an intelligent reflecting surface (IRS)-aided multi-tier hybrid computing system that can achieve mutual benefits for DT and MEC in the DITEN. For the first time, this paper presents the opportunity to realize the network-wide convergence of DT and MEC. In the considered system, specifically, over-the-air computation (AirComp) is employed to monitor the status of the DT system, while MEC is performed with the assistance of DT to provide low-latency computing services. Besides, the IRS is utilized to enhance signal transmission and mitigate interference among heterogeneous nodes. We propose a framework for designing the hybrid computing system, aiming to maximize the sum computation rate under communication and computation resources constraints. To tackle the non-convex optimization problem, alternative optimization and successive convex approximation techniques are leveraged to decouple variables and then transform the problem into a more tractable form. Simulation results verify the effectiveness of the proposed algorithm and demonstrate the IRS can significantly improve the system performance with appropriate phase shift configurations. Moreover, the results indicate that the DT assisted MEC system can precisely achieve the balance between local computing and task offloading since real-time system status can be obtained with the help of DT.\",\"PeriodicalId\":13038,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Signal Processing\",\"volume\":\"18 1\",\"pages\":\"83-97\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10316588/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10316588/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

数字孪生边缘网络(DITEN)旨在整合移动边缘计算(MEC)和数字孪生(DT),为第六代网络提供实时系统配置和灵活的资源分配。本文研究了一种智能反射面(IRS)辅助的多层混合计算系统,该系统可在 DITEN 中实现 DT 和 MEC 的互惠互利。本文首次为实现 DT 和 MEC 的全网融合提供了机会。具体而言,在所考虑的系统中,空中计算(AirComp)用于监控 DT 系统的状态,而 MEC 则在 DT 的协助下执行,以提供低延迟计算服务。此外,IRS 还可用于增强信号传输和缓解异构节点之间的干扰。我们提出了一个设计混合计算系统的框架,目的是在通信和计算资源受限的情况下最大化总计算率。为了解决非凸优化问题,我们采用了替代优化和连续凸近似技术来解耦变量,然后将问题转化为更易处理的形式。仿真结果验证了所提算法的有效性,并证明在适当的相移配置下,IRS 可以显著提高系统性能。此外,仿真结果表明,在 DT 的帮助下可以获得实时系统状态,因此 DT 辅助 MEC 系统可以精确地实现本地计算与任务卸载之间的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Reflecting Surface Aided Multi-Tier Hybrid Computing
The digital twin edge network (DITEN) aims to integrate mobile edge computing (MEC) and digital twin (DT) to provide real-time system configuration and flexible resource allocation for the sixth-generation network. This paper investigates an intelligent reflecting surface (IRS)-aided multi-tier hybrid computing system that can achieve mutual benefits for DT and MEC in the DITEN. For the first time, this paper presents the opportunity to realize the network-wide convergence of DT and MEC. In the considered system, specifically, over-the-air computation (AirComp) is employed to monitor the status of the DT system, while MEC is performed with the assistance of DT to provide low-latency computing services. Besides, the IRS is utilized to enhance signal transmission and mitigate interference among heterogeneous nodes. We propose a framework for designing the hybrid computing system, aiming to maximize the sum computation rate under communication and computation resources constraints. To tackle the non-convex optimization problem, alternative optimization and successive convex approximation techniques are leveraged to decouple variables and then transform the problem into a more tractable form. Simulation results verify the effectiveness of the proposed algorithm and demonstrate the IRS can significantly improve the system performance with appropriate phase shift configurations. Moreover, the results indicate that the DT assisted MEC system can precisely achieve the balance between local computing and task offloading since real-time system status can be obtained with the help of DT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Selected Topics in Signal Processing
IEEE Journal of Selected Topics in Signal Processing 工程技术-工程:电子与电气
CiteScore
19.00
自引率
1.30%
发文量
135
审稿时长
3 months
期刊介绍: The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others. The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.
期刊最新文献
Front Cover Table of Contents IEEE Signal Processing Society Information Introduction to the Special Issue Near-Field Signal Processing: Algorithms, Implementations and Applications IEEE Signal Processing Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1