利用无人机数据评估信号灯路口性能

Mujahid I. Ashqer , Huthaifa I. Ashqar , Mohammed Elhenawy , Mohammed Almannaa , Mohammad A. Aljamal , Hesham A. Rakha , Marwan Bikdash
{"title":"利用无人机数据评估信号灯路口性能","authors":"Mujahid I. Ashqer ,&nbsp;Huthaifa I. Ashqar ,&nbsp;Mohammed Elhenawy ,&nbsp;Mohammed Almannaa ,&nbsp;Mohammad A. Aljamal ,&nbsp;Hesham A. Rakha ,&nbsp;Marwan Bikdash","doi":"10.1080/19427867.2023.2204249","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel method to compute various measures of effectiveness (MOEs) at a signalized intersection using vehicle trajectory data collected by flying drones. Specifically, this study investigates the use of drone raw data at a busy three-way signalized intersection in Athens, Greece, and builds on the open data initiative of the pNEUMA experiment. Using a microscopic approach and shockwave analysis on data extracted from real-time videos, we estimated the maximum queue length, whether, when, and where a spillback occurred, vehicle stops, vehicle travel time and delay, crash rates, and fuel consumption. The results of the various MOEs were found to be promising. We also demonstrated that estimating MOEs in real-time is achievable using drone data. Such models can track individual vehicle movements within street networks and thus allow the modeler to consider any traffic conditions, ranging from highly under-saturated to highly over-saturated conditions.</p></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"16 5","pages":"Pages 452-460"},"PeriodicalIF":3.3000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating a signalized intersection performance using unmanned aerial Data\",\"authors\":\"Mujahid I. Ashqer ,&nbsp;Huthaifa I. Ashqar ,&nbsp;Mohammed Elhenawy ,&nbsp;Mohammed Almannaa ,&nbsp;Mohammad A. Aljamal ,&nbsp;Hesham A. Rakha ,&nbsp;Marwan Bikdash\",\"doi\":\"10.1080/19427867.2023.2204249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a novel method to compute various measures of effectiveness (MOEs) at a signalized intersection using vehicle trajectory data collected by flying drones. Specifically, this study investigates the use of drone raw data at a busy three-way signalized intersection in Athens, Greece, and builds on the open data initiative of the pNEUMA experiment. Using a microscopic approach and shockwave analysis on data extracted from real-time videos, we estimated the maximum queue length, whether, when, and where a spillback occurred, vehicle stops, vehicle travel time and delay, crash rates, and fuel consumption. The results of the various MOEs were found to be promising. We also demonstrated that estimating MOEs in real-time is achievable using drone data. Such models can track individual vehicle movements within street networks and thus allow the modeler to consider any traffic conditions, ranging from highly under-saturated to highly over-saturated conditions.</p></div>\",\"PeriodicalId\":48974,\"journal\":{\"name\":\"Transportation Letters-The International Journal of Transportation Research\",\"volume\":\"16 5\",\"pages\":\"Pages 452-460\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Letters-The International Journal of Transportation Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1942786723000024\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786723000024","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新方法,利用无人机收集的车辆轨迹数据计算信号灯路口的各种效果测量值(MOE)。具体而言,本研究以 pNEUMA 实验的开放数据倡议为基础,调查了无人机原始数据在希腊雅典一个繁忙的三向信号灯十字路口的使用情况。通过对从实时视频中提取的数据进行微观分析和冲击波分析,我们估算出了最大排队长度、是否、何时、何地发生了回溢、车辆停靠情况、车辆行驶时间和延误、碰撞率和燃油消耗。我们发现各种 MOE 的结果都很不错。我们还证明,使用无人机数据可以实时估算 MOE。这种模型可以跟踪街道网络中的单个车辆运动,因此允许建模者考虑从高度不饱和到高度过饱和的任何交通状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating a signalized intersection performance using unmanned aerial Data

This paper presents a novel method to compute various measures of effectiveness (MOEs) at a signalized intersection using vehicle trajectory data collected by flying drones. Specifically, this study investigates the use of drone raw data at a busy three-way signalized intersection in Athens, Greece, and builds on the open data initiative of the pNEUMA experiment. Using a microscopic approach and shockwave analysis on data extracted from real-time videos, we estimated the maximum queue length, whether, when, and where a spillback occurred, vehicle stops, vehicle travel time and delay, crash rates, and fuel consumption. The results of the various MOEs were found to be promising. We also demonstrated that estimating MOEs in real-time is achievable using drone data. Such models can track individual vehicle movements within street networks and thus allow the modeler to consider any traffic conditions, ranging from highly under-saturated to highly over-saturated conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
14.30%
发文量
79
审稿时长
>12 weeks
期刊介绍: Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research. The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.
期刊最新文献
Analysis of the factors affecting the time spent on leisure activities by using an ordered logit model A fast-response mathematical programming approach for delivering disaster relief goods: an earthquake case study The Integrated optimization of intermittent lane intersection design and dynamic signal control: efficiency, safety, and fuel consumption Parcel locker location problem with selectable volume sizes and heterogeneous customers in the last mile delivery Investigating the spatial heterogeneity of factors influencing speeding-related crash severities using correlated random parameter order models with heterogeneity-in-means
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1