{"title":"构建含有不同活性成分的 Ce-Mn/Al2O3 以低温催化降解土壤中的氯苯","authors":"","doi":"10.1016/j.jre.2023.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>Soil remediation containing numerous organic contaminants is of great significance to ecological environment. Herein, the synergetic effects of Ce–Mn/Al<sub>2</sub>O<sub>3</sub> with different active components on catalytic thermal desorption of chlorobenzene in soil were investigated. The optimized Ce–Mn/Al<sub>2</sub>O<sub>3</sub> drastically enhance the desorption efficiency of chlorobenzene, and the corresponding conversion reaches 100% within 1 h at a low temperature of 120 °C. The superior performance is ascribed to the formation of Ce–Mn solid solution during the calcination process, resulting in a certain lattice change to the generation of abundant oxygen vacancies and acidic sites. Combining with the analysis of <em>in-situ</em> diffuse reflectance infrared spectroscopy and gas chromatography-mass spectrometry, the final products of chlorobenzene are decomposed into CO<sub>2</sub>, H<sub>2</sub>O, Cl<sub>2</sub> and HCl. This work sheds light on the rational design of highly-active catalysts for practical applications of sustainable soil remediation.</div></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 10","pages":"Pages 1873-1881"},"PeriodicalIF":5.2000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing Ce–Mn/Al2O3 with different active components for low temperature catalytic degradation of chlorobenzene in soil\",\"authors\":\"\",\"doi\":\"10.1016/j.jre.2023.10.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil remediation containing numerous organic contaminants is of great significance to ecological environment. Herein, the synergetic effects of Ce–Mn/Al<sub>2</sub>O<sub>3</sub> with different active components on catalytic thermal desorption of chlorobenzene in soil were investigated. The optimized Ce–Mn/Al<sub>2</sub>O<sub>3</sub> drastically enhance the desorption efficiency of chlorobenzene, and the corresponding conversion reaches 100% within 1 h at a low temperature of 120 °C. The superior performance is ascribed to the formation of Ce–Mn solid solution during the calcination process, resulting in a certain lattice change to the generation of abundant oxygen vacancies and acidic sites. Combining with the analysis of <em>in-situ</em> diffuse reflectance infrared spectroscopy and gas chromatography-mass spectrometry, the final products of chlorobenzene are decomposed into CO<sub>2</sub>, H<sub>2</sub>O, Cl<sub>2</sub> and HCl. This work sheds light on the rational design of highly-active catalysts for practical applications of sustainable soil remediation.</div></div>\",\"PeriodicalId\":16940,\"journal\":{\"name\":\"Journal of Rare Earths\",\"volume\":\"42 10\",\"pages\":\"Pages 1873-1881\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rare Earths\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002072123002946\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072123002946","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Constructing Ce–Mn/Al2O3 with different active components for low temperature catalytic degradation of chlorobenzene in soil
Soil remediation containing numerous organic contaminants is of great significance to ecological environment. Herein, the synergetic effects of Ce–Mn/Al2O3 with different active components on catalytic thermal desorption of chlorobenzene in soil were investigated. The optimized Ce–Mn/Al2O3 drastically enhance the desorption efficiency of chlorobenzene, and the corresponding conversion reaches 100% within 1 h at a low temperature of 120 °C. The superior performance is ascribed to the formation of Ce–Mn solid solution during the calcination process, resulting in a certain lattice change to the generation of abundant oxygen vacancies and acidic sites. Combining with the analysis of in-situ diffuse reflectance infrared spectroscopy and gas chromatography-mass spectrometry, the final products of chlorobenzene are decomposed into CO2, H2O, Cl2 and HCl. This work sheds light on the rational design of highly-active catalysts for practical applications of sustainable soil remediation.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.