Ankit Joshi , Lyle Bartels , Shri H. Viswanathan , Daniel M. Martinez , Kambiz Sadeghi , Ankush K. Jaiswal , Daniel Collins , Konrad Rykaczewski
{"title":"用热人体模型评价下背部外服的热性能和热调节作用","authors":"Ankit Joshi , Lyle Bartels , Shri H. Viswanathan , Daniel M. Martinez , Kambiz Sadeghi , Ankush K. Jaiswal , Daniel Collins , Konrad Rykaczewski","doi":"10.1016/j.ergon.2023.103517","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>As exoskeletons and exosuits rapidly transition from laboratory to practice, the thermal discomfort posed by wearing the devices is emerging as a significant challenge towards their widespread adoption. We use a thermal manikin coupled with a </span>thermoregulation model to evaluate the </span>thermal properties and thermophysiological impacts of such devices. We measure thermal and </span>evaporative resistances of summer and full clothing coupled with a legacy low-back supporting exosuit and its successor that features two design alterations to improve the user's thermal comfort. We quantify the decrease in evaporative resistance provided by substantial perforation of the back portion of the updated exosuit. The thermal manikin can replicate local skin temperature decrease associated with a release of a dual-mode thigh body attachment measured during a prior human trial. Using the thermal manikin coupled with a thermoregulation model, we simulate how the updated exosuit with several levels of assumed metabolic rate reduction impacts sweat rate, skin and core temperature changes during multiple work-rest cycles in a hot and humid climate. While a large metabolic rate reduction (>15%) is required to significantly slow the core temperature increase, even a minor metabolic rate reduction (5%) could provide a substantial reduction (20%) in the sweat rate (i.e. could reduce dehydration). Results suggest that thermal manikins with a thermoregulation model are an effective and efficient platform for comparing exosuit design features and for improving their thermal aspects. Our study highlights the comprehensive method and importance of considering thermal aspects when designing exosuits for occupational use.</p></div>","PeriodicalId":50317,"journal":{"name":"International Journal of Industrial Ergonomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of thermal properties and thermoregulatory impacts of lower back exosuit using thermal manikin\",\"authors\":\"Ankit Joshi , Lyle Bartels , Shri H. Viswanathan , Daniel M. Martinez , Kambiz Sadeghi , Ankush K. Jaiswal , Daniel Collins , Konrad Rykaczewski\",\"doi\":\"10.1016/j.ergon.2023.103517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>As exoskeletons and exosuits rapidly transition from laboratory to practice, the thermal discomfort posed by wearing the devices is emerging as a significant challenge towards their widespread adoption. We use a thermal manikin coupled with a </span>thermoregulation model to evaluate the </span>thermal properties and thermophysiological impacts of such devices. We measure thermal and </span>evaporative resistances of summer and full clothing coupled with a legacy low-back supporting exosuit and its successor that features two design alterations to improve the user's thermal comfort. We quantify the decrease in evaporative resistance provided by substantial perforation of the back portion of the updated exosuit. The thermal manikin can replicate local skin temperature decrease associated with a release of a dual-mode thigh body attachment measured during a prior human trial. Using the thermal manikin coupled with a thermoregulation model, we simulate how the updated exosuit with several levels of assumed metabolic rate reduction impacts sweat rate, skin and core temperature changes during multiple work-rest cycles in a hot and humid climate. While a large metabolic rate reduction (>15%) is required to significantly slow the core temperature increase, even a minor metabolic rate reduction (5%) could provide a substantial reduction (20%) in the sweat rate (i.e. could reduce dehydration). Results suggest that thermal manikins with a thermoregulation model are an effective and efficient platform for comparing exosuit design features and for improving their thermal aspects. Our study highlights the comprehensive method and importance of considering thermal aspects when designing exosuits for occupational use.</p></div>\",\"PeriodicalId\":50317,\"journal\":{\"name\":\"International Journal of Industrial Ergonomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Industrial Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169814123001099\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169814123001099","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Evaluation of thermal properties and thermoregulatory impacts of lower back exosuit using thermal manikin
As exoskeletons and exosuits rapidly transition from laboratory to practice, the thermal discomfort posed by wearing the devices is emerging as a significant challenge towards their widespread adoption. We use a thermal manikin coupled with a thermoregulation model to evaluate the thermal properties and thermophysiological impacts of such devices. We measure thermal and evaporative resistances of summer and full clothing coupled with a legacy low-back supporting exosuit and its successor that features two design alterations to improve the user's thermal comfort. We quantify the decrease in evaporative resistance provided by substantial perforation of the back portion of the updated exosuit. The thermal manikin can replicate local skin temperature decrease associated with a release of a dual-mode thigh body attachment measured during a prior human trial. Using the thermal manikin coupled with a thermoregulation model, we simulate how the updated exosuit with several levels of assumed metabolic rate reduction impacts sweat rate, skin and core temperature changes during multiple work-rest cycles in a hot and humid climate. While a large metabolic rate reduction (>15%) is required to significantly slow the core temperature increase, even a minor metabolic rate reduction (5%) could provide a substantial reduction (20%) in the sweat rate (i.e. could reduce dehydration). Results suggest that thermal manikins with a thermoregulation model are an effective and efficient platform for comparing exosuit design features and for improving their thermal aspects. Our study highlights the comprehensive method and importance of considering thermal aspects when designing exosuits for occupational use.
期刊介绍:
The journal publishes original contributions that add to our understanding of the role of humans in today systems and the interactions thereof with various system components. The journal typically covers the following areas: industrial and occupational ergonomics, design of systems, tools and equipment, human performance measurement and modeling, human productivity, humans in technologically complex systems, and safety. The focus of the articles includes basic theoretical advances, applications, case studies, new methodologies and procedures; and empirical studies.