PVA/Fe2O3/Se新型电子材料的设计与研究

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Ovonic Research Pub Date : 2023-11-01 DOI:10.15251/jor.2023.196.615
K. A. Mohammed, K. H. Salem, M. F. Jawaad, M. A. Alkhafaji, R. S. Zabibah
{"title":"PVA/Fe2O3/Se新型电子材料的设计与研究","authors":"K. A. Mohammed, K. H. Salem, M. F. Jawaad, M. A. Alkhafaji, R. S. Zabibah","doi":"10.15251/jor.2023.196.615","DOIUrl":null,"url":null,"abstract":"This study presents the synthesis of a novel ovonic nanomaterial by the chemical route approach, involving the combination of three distinct materials: polyvinyl alcohol (PVA), iron oxide (Fe2O3), and selenium (Se) nanoparticles. The produced material underwent evaluation using various analytical techniques, including Xray diffraction (XRD), energydispersive Xray spectroscopy (EDS), scaning electron microscope (SEM), and UV-Visible spectrophotometer. The focus of the work revolved around a unique hybrid structure consisting of selenium nanoparticles that were embedded within a polyvinyl alcohol and iron(III) oxide. The examination of micro structure information yielded findings that support the notion that Se nanoparticles have an impact on the structural properties of PVA/Fe2O3. (XRD) and (EDS) examines provided confirmation of the formation of a novel composite structure. The produced composites had notable absorption peaks at a wavelength of 530 nm for PVA-Fe2O3-CdZnS. These composites exhibited a progressive transition towards absorption in higher wavelength areas. The composite material that has been suggested for potential utilization in forthcoming energy storage applications.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing and studying of PVA/Fe2O3/Se as new ovonic material for possible storage application\",\"authors\":\"K. A. Mohammed, K. H. Salem, M. F. Jawaad, M. A. Alkhafaji, R. S. Zabibah\",\"doi\":\"10.15251/jor.2023.196.615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the synthesis of a novel ovonic nanomaterial by the chemical route approach, involving the combination of three distinct materials: polyvinyl alcohol (PVA), iron oxide (Fe2O3), and selenium (Se) nanoparticles. The produced material underwent evaluation using various analytical techniques, including Xray diffraction (XRD), energydispersive Xray spectroscopy (EDS), scaning electron microscope (SEM), and UV-Visible spectrophotometer. The focus of the work revolved around a unique hybrid structure consisting of selenium nanoparticles that were embedded within a polyvinyl alcohol and iron(III) oxide. The examination of micro structure information yielded findings that support the notion that Se nanoparticles have an impact on the structural properties of PVA/Fe2O3. (XRD) and (EDS) examines provided confirmation of the formation of a novel composite structure. The produced composites had notable absorption peaks at a wavelength of 530 nm for PVA-Fe2O3-CdZnS. These composites exhibited a progressive transition towards absorption in higher wavelength areas. The composite material that has been suggested for potential utilization in forthcoming energy storage applications.\",\"PeriodicalId\":49156,\"journal\":{\"name\":\"Journal of Ovonic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovonic Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15251/jor.2023.196.615\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jor.2023.196.615","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过化学途径合成了一种新型的卵形纳米材料,该材料包括三种不同的材料:聚乙烯醇(PVA)、氧化铁(Fe2O3)和硒(Se)纳米颗粒。使用各种分析技术对生产的材料进行了评估,包括x射线衍射(XRD),能量色散x射线光谱(EDS),扫描电子显微镜(SEM)和紫外可见分光光度计。这项工作的重点是围绕一种独特的混合结构,该结构由嵌入聚乙烯醇和氧化铁(III)的硒纳米颗粒组成。微观结构信息的研究结果支持了Se纳米粒子对PVA/Fe2O3的结构性能有影响的观点。(XRD)和(EDS)检测证实了一种新型复合结构的形成。复合材料对PVA-Fe2O3-CdZnS在530 nm处有明显的吸收峰。这些复合材料表现出向更高波长区域吸收的渐进过渡。该复合材料已被建议在即将到来的储能应用中具有潜在的利用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing and studying of PVA/Fe2O3/Se as new ovonic material for possible storage application
This study presents the synthesis of a novel ovonic nanomaterial by the chemical route approach, involving the combination of three distinct materials: polyvinyl alcohol (PVA), iron oxide (Fe2O3), and selenium (Se) nanoparticles. The produced material underwent evaluation using various analytical techniques, including Xray diffraction (XRD), energydispersive Xray spectroscopy (EDS), scaning electron microscope (SEM), and UV-Visible spectrophotometer. The focus of the work revolved around a unique hybrid structure consisting of selenium nanoparticles that were embedded within a polyvinyl alcohol and iron(III) oxide. The examination of micro structure information yielded findings that support the notion that Se nanoparticles have an impact on the structural properties of PVA/Fe2O3. (XRD) and (EDS) examines provided confirmation of the formation of a novel composite structure. The produced composites had notable absorption peaks at a wavelength of 530 nm for PVA-Fe2O3-CdZnS. These composites exhibited a progressive transition towards absorption in higher wavelength areas. The composite material that has been suggested for potential utilization in forthcoming energy storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ovonic Research
Journal of Ovonic Research MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
1.90
自引率
20.00%
发文量
77
期刊介绍: Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.
期刊最新文献
Simulation of sodium diborate glass containing lead and cadmium oxides for radiation shielding applications Effects of composition on the structure, thermal and some physical characteristics of Bi2O3-B2O3-ZnO-SiO2 glasse Novel synthesis and spectroscopic analysis of gallium oxide doped zinc phosphate glass Synthesis of zinc oxide thin films by spray pyrolysis technique Physical and sensing characterization of nanostructured Ag doped TiO2 thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1