João Luiz Junho Pereira, Kate Smith-Miles, Mario Andrés Muñoz, Ana Carolina Lorena
{"title":"无偏机器学习算法评价基准数据集的最优选择","authors":"João Luiz Junho Pereira, Kate Smith-Miles, Mario Andrés Muñoz, Ana Carolina Lorena","doi":"10.1007/s10618-023-00957-1","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"67 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal selection of benchmarking datasets for unbiased machine learning algorithm evaluation\",\"authors\":\"João Luiz Junho Pereira, Kate Smith-Miles, Mario Andrés Muñoz, Ana Carolina Lorena\",\"doi\":\"10.1007/s10618-023-00957-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":55183,\"journal\":{\"name\":\"Data Mining and Knowledge Discovery\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10618-023-00957-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10618-023-00957-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
期刊介绍:
Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.